光电编码器应用了光电转换原理,可以将输出轴上的机械几何位移量转换成脉冲或数字量。这是目前应用最多的传感器,由于光电码盘与电动机同轴,电动机旋转时,码盘(光栅盘)与电动机同速旋转,反映当前电动机的转速。
它主要由光源、码盘、光学系统及电路4部分组成。那下面我们根据不同种类的光电编码器进行说明。
图1
一、增量式编码器
它可以将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,旋转增量式编码器以在转动时输出脉冲,通过计数设备来知道其位置。并且位置是从零位标记开始计算的脉冲数量是确定的,当停电后,编码器不能有任何的移动,再次上电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移。错误的结果很难发现,如不能准确定位参考点,则不能保证位置的准确性。所以每次操作都要先找参考点。但是这样的编码器它不受停电、干扰的影响。
图2
增量式编码器可利用光电转换原理输出A、B和Z三组方波脉冲;A、B两组脉冲相位差90度,能够判断出电机的旋转方向,而Z相为每转一圈输出一个脉冲,用于基准点定位。此编码器原理构造简单,机械平均,并且寿命可达几万小时,具有较强的抗干扰能力,可靠性高。但是是无法输出轴转动的绝对位置信息。
二、绝对式编码器
绝对式编码器每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。其位置是由输出代码的读数确定的。当电源断开时,绝对型编码器并不与实际的位置分离。重新上电时,位置读数仍是当前的。
图3
绝对编码器能够直接进行数字量大的输出,在码盘上会有若干的码道,码道数就是二进制位数。在每条码道上都会由透光与不透光的扇形区域组成,通过采用光电传感器对信号进行采集。在码盘两侧分别设置有光源和光敏元件,这样光敏元件则能够根据是否接受到光信号进行电平的转换,输出二进制数。并且在不同位置输出不同的数字码。从而可以检测绝对位置。但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数。优点:可以直接读出角度坐标的绝对值,没有累积误差,电源切除后位置信息不会丢失。编码器的抗干扰特性、数据的可靠性大大提高了。
三、混合式绝对值编码器
混合式绝对值编码器,它输出两组信息:一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。
四、旋转变压器
旋转变压器简称旋变,是由经过特殊电磁设计的高性能硅钢叠片和漆包线构成的,相比于采用光电技术的编码器而言,具有耐热,耐振。耐冲击,耐油污,甚至耐腐蚀等恶劣工作环境的适应能力。一对极(单速)的旋变可以视作一种单圈绝对式反馈系统,应用也最为广泛。
图4
五、正余弦伺服电机编码器
可以不采用高频率的通讯即可让伺服驱动器获得高精度的细分,这样降低了硬件要求,同时由于有单圈角度信号,可以让伺服电机启动平稳,启动力矩大。
为了让能能更好的测试电机的性能参数,ZLG致远电子MPT 电机测试系统独创“自由加载引擎”技术,可进行控制响应测试、阶跃响应测试。能够满足对电机和驱动器的瞬态测量需求,推动行业的发展。
关键字:编码器 精准控制 电机
引用地址:
编码器的分类
推荐阅读最新更新时间:2024-05-03 00:10
PLC伺服电机的三种控制方式
伺服电机速度控制和转矩控制都是用模拟量来控制,位置控制是通过发脉冲来控制。具体采用什么控制方式要根据客户的要求以及满足何种运动功能来选择。 接下来,给大家介绍伺服电机的三种控制方式。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用速度或位置模式比较好。 如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 就伺服驱动器的响应速度来看:转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最
[嵌入式]
基于DSP的全数字永磁电机推进系统
针对永磁推进电机低转速、大转矩、轻噪声的运行要求,其控制应具备良好的低速性能 根据最大转矩/电流矢量控制原理 该文提出了一套以数字信号处理器(DSP)为横心的全数字永磁同步电动机推进系统控制方案,给出了交-直-交脉宽调制(PWM)驱动方式的硬件结构,以及比例积分调节、空间矢量PWM(SVPWM)等软件设计 仿真和实验结果表明,系统动态响应快,转矩脉动小,谐波含量少,低速性能良好,能移满足舰船电力推进的需要 永磁推进电机因其体积小、重量轻、效率高、转矩密度大等优点,已经开始替代传统直流推进电机,成为现代舰船电力推进系统中的常见动力装置之一 国外对大功率交流推进电机的驱动控制研究多集中在异步电机方面,而国内目前还处于吸收引进阶
[嵌入式]
电动汽车快速充电机监控终端的设计
随着国家对新能源技术的大力扶持,电动汽车逐渐成为国家在新能源汽车产业大力发展的对象,而电动汽车充电站、快速充电机是电动汽车大规模化后不可或缺的服务基础设施之一。大量分布于各住宅小区、停车场的电动汽车用非车载智能快速充电机,实现高效、安全、智能化的管理必定成为主流。针对目前快速充电机群实行无人值守的运行情况,这就要求快速充电机须具有较高的可靠性和自动化程度,功能更加完善,可远程维护等功能。 这样,使得分布式、模块化、智能化成为快速充电机的发展方向,而高性能、低成本的充电机监控终端是其中的关键技术。为管理区域多台充电机的资源优化利用与管理的智能化,监控终端与Internet网的交互成为一种必然。 1 监控网络的整体方案 如图1的充电机
[电源管理]
DSP在三相无刷直流电机中的应用
1 概述 无刷直流电机是随着电力电子器件及新型材料发展而迅速成熟起来的一种新型机电一体化电机,它既具有交流电机的结构简单,运行可靠,维护方便等优点,又具备直流电机那样良好的调速特性而无由于机械式换向器带来的问题,还具有运行转速稳定、效率高、相对成本低等优点,因此被广泛应用于各种调速驱动场合 。以往的无刷直流电机多由单片机附加许多种接口设备构成.不仅复杂,而且速度也受到限制,难于实现从位置环到速度、电流环的全数字控制,也不方便扩展。而应用数字信号处理器(DSP)实现的电机伺服系统却可以只用一片DSP就可以替代单片机和各种接口, 扩展方便,可以实现位置、速度和电流环的全数字化控制 。 本文采用TI公司推出的240xDSP作
[嵌入式]
适用于风力发电机的可靠电力电子器件
1 引言
在兆瓦级,大功率电力电子应用中需要大容量的半导体器件。然而,对于某些应用来说,即使是目前可以得到的最大半导体器件容量也不够大。因此需要将它们并联。在传统的电力电子电路中将半导体器件并联是非常普遍的。
现在讨论一种可能的方案:电力电子装配把包含IGBT和二极管的IGBT基本单元、散热器、直流环节电容、驱动器和保护电路、辅助电源和PWM控制器(一个独立单元)组装在一个三相逆变器中。这些单元可以并联,例如用于一台带永磁发电机的4象限驱动风力发电机和所展示的全功率4兆瓦变换器。
本文介绍一种在中压范围内得到更大风力发电功率的方法。该方法使用变速中压永磁发电机的线路接口连接,没有任何电压和功率限制,并
[电源管理]
伺服电机编码器替代技巧
伺服电机编码器替代技巧 从结构上讲,伺服系统分为三部分:伺服电机、编码器、驱动器。伺服电机的精度取决于编码器,故障也常见于这三方面。由于技术、利益等关系,各厂家所生产的配件不可代替,而进口配件的渠道不很畅通,造成维修上很大困难。我们可以通过对其测量,分析研究工作原理,尝试采用替换的方法进行维修。例如,手头上有一个15芯电缆的编码器,尝试替代日本安川9芯电缆的编码器,该编码器分辨率为1024,6极,配套在安川公司生产的型号为SGMP-06AFTF22的交流伺服电机上,其原理如图1所示。即编码器的接线除 a正、a负、b正、b负、z正、z负,加上正负电源和屏蔽共9根线。而手头上的15根线编码器与电机装配的9根线编码器无法替代使
[嵌入式]
用DSP实现增量式光电编码器的细分
摘要:对光栅传感器原始信号进行细分是采用各类光栅器件进行高精度位置测量、角度测量过程中不可或缺的一个环节。细分方法多种多样,针对各种现有的电子学细分方案并结合实际应用,本文采用软件程序判卦限,查表细分方法,实现了针对测角传感器信号的2048次细分。
关键词:光栅传感器, 测量, 细分
1 引言
目前,各类伺服驱动器及其应用中广泛采用光栅装置作为速度测量、位置测量的敏感元件。而且,广泛采用两路正交方波的形式,系统的实时性要求极高。因此,对于光栅编码器的信号的细分等主要处理环节,一方面集中考虑提高分辨率的问题,同时,需要考虑实时性的问题。
有很多采取纯硬件进行细分的方法,如,电阻链细分,空间细分,锁相倍频,还有两种方法的结合
[嵌入式]
舵机对比伺服电机,步进电机有哪些优点?
在讲这个问题之前,先简单介绍一下舵机、伺服电机、步进电机是什么以及它们的优缺点。 伺服电机是一个电机系统,它包含电机、传感器和控制器。直流无刷电机可以是伺服电机里面的一部分,交流电机也可以是,但他们并不是伺服电机。仅仅一台电机都不能算是伺服电机,因为他们并不具备伺服电机的功能。因此常常体积较大,主要用于比较精准的位置、速度或力矩输出。 伺服电机结构图 步进电机英文是stepper/step/stepping motor。主要是依靠定子线圈序列通电,顺次在不同的角度形成磁场,推拉定子旋转。步进电机的好处是,你可以省掉用于测量电机转角的传感器。因此在结构上和价格上有一定的优势。而且它的位置和速度控制相对简单。其缺点是,第一,与
[嵌入式]