基于cPCI总线的嵌入式遥测前端处理器系统设计

发布者:advancement4最新更新时间:2007-05-25 来源: 电子技术应用关键字:同步  存储  实时  传输 手机看文章 扫描二维码
随时随地手机看文章
遥测数据处理系统在航空、航天等军工试验领域有着广泛的应用。在航空飞行试验中.遥测数据处理系统为各类试飞测试数据的实时处理提供了手段和平台,是试飞员、试飞指挥员及试飞工程师协同完成新机试飞必不可少的重要设施,是确保现代飞机试飞安全、提高试飞效率、缩短试飞周期、实现综合试飞的重要手段。

遥测数据处理系统中的核心设备——遥测前端处理器,技术上经历了从分立式、智能式到嵌入式的快速发展。我国遥测前端处理器的研发经历了从引进、合作研制到完全自行研制的历程。

遥测前端处理器是一套嵌入式实时计算机系统,承担着遥测PCM数据的同步、分路、工程单位转换、数据计算、数据分配等实时处理任务。它和遥测系统管理服务器、工作站等设备通过网络联接和系统集成,组成当前流行的基于C/S结构的遥测数据处理系统。可以说,遥测前端处理器的技术水平代表了遥测数据处理系统的技术水平。

1 系统功能和主要技术指标

遥测前端处理器的功能简单地说,就是把来自遥测接收设备送来的多路串行PCM(Pulse Code Modulation)数据流进行同步、分路、合并、存储,并对转换后的并行数据进行工程单位转换、导出参数计算等实时处理,通过网络把数据传送给显示工作站。再通过遥测记录数据重放,为用户提供同实时方式一样的处理功能和更为详细的数据分析功能。

遥测前端处理器主要技术指标为:
(1)可同时完成2路PCM数据流的同步和分路,每路PCM速率不大于20Mbps。
(2)实时数据处理速率:20Mbps。
(3)数据传输:交换式以太网、网络带宽1000Mbps、广播方式和“点对点”方式。
(4)数据存储:满足在最大速率下数据存储不丢失,磁盘容量满足不小于4小时的记录时间。
(5)D/A输出:12位、16路模拟信号输出。

2 系统组成和体系结构设计

二十世纪90年代,因受当时的计算机技术限制,国内外大多数嵌入式遥测前端处理器都采用了基于VME总线的计算机平台和双总线、多CPU、百兆以太网接口的体系结构,其技术复杂、成本高、软件开发难度大、系统研制周期长。

当前计算机技术的发展,使得CPU速度和总线速率已不再是新一代嵌入式遥测前端处理器的瓶颈,基于单CPU、单总线和千兆以太网接口的体系结构成为新一代嵌入式遥测前端处理器的主流设计。板卡化后的遥测前端设备,如码同步器、分路器、时码发生器等作为计算机的一个插件板,嵌人到工业计算机系统中,其组成已简化为:19英寸计算机箱、CPU板、多功能PCM分路器板、时码板、D/A板和存储设备,其典型结构与组成见图1所示。新一代嵌入式遥测前端处理器体系结构简化,性能和可靠性提高,成本降低,研制周期缩短,更容易集成为基于C/S结构的多数据流遥测数据处理系统。


3 硬件设计

3.1 总线平台和OEM板卡的选择


计算机总线平台是嵌入式遥测前端处理器的关键,当前国外嵌入式遥测前端处理器均选用了目前流行的Compact PCI计算机总线平台。该平台吸收了PC机商用技术的最新成果,数据传输速率满足新一代嵌入式遥测前端处理器实时处理多条PCM数据流时的传输要求,环境条件、可靠性等都满足运输类飞机机载、地面活动车载等环境使用要求。

遥测前端处理器中的其他硬件,除PCM分路器板外,均选用了OEM产品。机箱选用12槽Compact PCI机箱(包括电源组件和磁盘);根据处理要求,本设计的CPU板选用了美国SBS公司的C7系列,CPU PⅢ1GHz,RAM 1GB,2个1000Mb以太网口,1个SCSI口。时码板选用了美国DATUM公司带GPS授时的BC637;D/A板选用了美国NI公司的N16713系列,每板8通道.每通道lMSps,D/A分辨率为12位。

考虑到单片式全数字码同步器在国外已有使用,因此在多功能双PCM分路器板设计时已预留了单片码同步器的芯片位置。本设计码同步器选用外置式码同步器。

3.2 多功能双PCM分路器板的设计与实现


PCM分路器板是嵌入式遥测前端处理器的关键插件,国外也有不少单板、单PCM分路的OEM产品。但高端产品的购置受到西方国家诸多限制,因此,选取了自行设计的技术途经,研制成功了基于Compact PCI总线的多功能双路。PCM分路器板,其技术水平达到当前国际先进水平。

3.2.1 PCM分路器板的硬件逻辑设计


多功能双PCM分路器的原理框图如图2所示,由双PCM分路器(包括帧同步检测、帧/子帧同步策略及相应的时序控制逻辑等)、PCM模拟器、语音采集等功能模块组成。主要功能均由大规模集成电路CPLD可编程逻辑芯片实现。

CPLD选用了Latfice公司的ISP 4512V系统在线可编程器件。由于ISP便于现场更改,降低了研发成本,缩短了系统调试时间。

在众多通用的PCI接口芯片中,选用了目前业界设计选用的主流芯片:PLX公司的PLX9054。PLX9054是一种功能强、使用灵活并符合PCIV2.2规范的32位、33MHz的。PCI总线接口控制器,它可以作为PCI总线的主控设备去控制总线,也可以作为目标设备去响应总线。PIX9054提供了PCI总线、EWROM、IDCAL总线3个接口,作为一种“桥”芯片,在PCI总线和LOCAL总线之间有3种直接的数据传输模式。本设计选用了DMA数据传输模式。PLX9054以其强大的功能和简单的用户接口,为PCI总线接口的开发提供了一种简洁的方法,设计者只需设计本地总线接口控制电路,即可实现与PCI总线的高速数据传输。

3.2.2 帧、子帧同步及同步策略的实现


PCM数据一个参数是以一个字或多个字的方式表达的,每个字由若干码元组成,而在一个PCM采集系统中,所有测试参数组成一个参数群,该参数群称为帧/子帧结构。怎样才能准确地区分每个字的起始位置.正确地恢复采集参数的并行数据,也就是获取帧/子帧以及表示各参数的数据字的起始时刻相一致的脉冲序列,其过程即称为帧/子帧同步。帧,子帧同步信号的作用在于在一串信号群中,给出一个起始时间标志,以便对每个参数字进行正确地分路,其特点是:它本身的信息量不大,但对传输的可靠性要求很高。帧同步检测器是PCM分路器板的关键部分,其他工作都是在帧同步检测器完成正确的检测后进行的,因此,帧同步检测器起着至关重要的作用。其框图如图3所示。

按照数据采集方案的格式要求,预先由处理器进行初始化设置,包括帧同步码组、同步码组的长度和允许同步码组的错误位数。随着时间的推移,PCM数据在CLDCK信号的控制下,逐位进入移位寄存器,移位寄存器的输出数据进入比较器,随时与帧同步码组进行比较,在同步码组长度逻辑的控制下,一旦检测到可能的同步码组,则比较器输出同步信号,该同步信号还必须由判决器来进行判决才能决定其是否有效。其方法是:预先设置允许的错误容限也就是允许的错误位数,然后根据比较器的输出信号是否满足错误容限的要求来决定真正的同步信号的输出。帧同步信号的产生为整个PCM分路器板提供了最基本、最重要的时序依据。

帧同步策略是PCM分路的关键技术之一,其意义在于最大限度地解决数据传输过程中造成的“漏同步”和“假同步”现象,以降低误码率,进一步提高数据检测的可靠性和有效性。一种基本的且经实践检验行之有效的帧同步策略是:在帧同步检测完成后,按照PCM格式定义的PCM字长和帧长,连续找到几个(一般为3个)相匹配的同步码组后,即认为帧确为同步。

帧同步策略的逻辑实现如图4所示。由图4可以看出,帧同步的正确性可以依据以下条件:
(1)同步码组的正确性。
(2)帧长的正确性(通过帧长计数器与帧长预置值的比较实现)。
(3)同步、检测和失步的判别。不同的设计者可采用不同的方法,目的是消除假同步和漏同步的影响。可以采取以下方法:若比较器连续出现3个相等值时同步,当有一个不等值时,进入检测状态;而当出现连续3个不等值或检测一定时间后不能同步时,则进入失步状态。

以上解决了帧同步的问题,也就是找到了每一帧的起止位置。然而,每一帧的各数据字在特定的测试方案中又不可能相同,如何来确定某个参数字在哪一帧的哪个位置?帧同步以后,数据传输的正确位置是否可靠?这就是子帧同步要解决的问题。多年来,国内外广泛采用的于帧同步方式为ID同步方式。

子帧同步策略是PCM分路的另一关键技术,其意义在于:在帧同步的基础上,对数据的可靠性作进一步的容错检测。一种常用的且经实践检验较为可靠的子帧同步策略是:连续检查几个子帧数据(一般为3个),其子帧同一位置的ID字如果相同或相邻子帧相应的ID字连续,则判决为子帧同步,否则子帧不同步。

子帧同步策略逻辑实现如图5所示。由图5可以看出,子帧同步与策略的正确性依据以下条件:
(1)ID字位置及其值的正确性(如过零检测)。
(2)子帧长的正确性(通过子帧长与帧计数器值的比较判断)。
(3)同步、检测和失步的判别,方法与帧同步策略类似。

在本设计中,双PCM帧同步检测、帧/子帧同步策略均通过CPLD逻辑器件实现,不仅提高了设计的集成度,而且提高了系统的可靠性及其性能,使每路PCM分路速率达到20Mbps的国际先进水平。

4 软件平台选择及软件组成

目前常用的遥测前端处理器操作系统有Windows2000和VxWorks二种。Windows2000通用、软件资源丰富、易于使用和扩展;而VxWorks是一个用途广泛的实时操作系统,具有良好的实时性、可靠性和可裁减性。根据遥测数据处理的实际需求,本设计选用了Windows2000,程序设计语言选用C++。

遥测前端处理器软件组成与实时数据处理流程框图如图6所示。

图6 遥测前端处理器软件组成与实际工资时数据处理流程


遥测前端处理器中的软件由PCM数据采集、参数提取、工程单位转换、数据合并与导参数计算、报警参数处理、数据存储、网络通信与数据分配等模块组成。其中,采集、参数提取、工程单位转换模块与数据流相对应,每个数据流单独一套。PCM数据经采集后,接事先定义对参数进行提取、工程单位转换和必要的处理、存储。按事先设置,需要模拟输出的数据直接由D/A板输出,通过网络把工程单位数据和原始数据传输给工作站,由工作站完成遥测数据的各种方式的可视化显示和飞行试验专用数据分析与处理。

基于cPCI总线的新一代嵌入式遥测前端处理器的设计和实现,使遥测数据处理系统的集成更加容易。其20Mbps的速率、双路PCM数据的分路和实时处理能力。可满足现代军、民机飞行试验遥测数据处理要求。它的应用使我国的飞行试验遥测数据处理技术水平得到很大的提升。同时,cPCI总线的加固特性,使以嵌人式遥测前端处理器为核心而组成的实时遥测数据处理系统,满足了运输类飞机机载要求和地面车载环境要求,拓宽了遥测前端处理器在军工试验和民用工业试验等领域内的应用范围,有着广阔的应用前景。

关键字:同步  存储  实时  传输 引用地址:基于cPCI总线的嵌入式遥测前端处理器系统设计

上一篇:基于MPC8260处理器的PPMC系统
下一篇:基于cPCI总线的嵌入式遥测前端处理器系统设计

推荐阅读最新更新时间:2024-05-02 20:36

高速数据传输在汽车解决方案中的应用
每天,都有越来越多的传感器加入到我们的日常生活当中–从家中的智能设备,一直延伸到日益互联互通的车辆之中。为了实现高速数据传输,实时传感器数据必不可少,因此需要最优的信号完整性(SI)与电磁兼容性(EMC)。为了做到这一点,需要使用合适的软硬件设备以及懂得利用这些工具的专业人员。 产品开发过程中的持续测试 Molex对定制和现成产品中的SI/EMC进行优化,为互连车辆和智能车辆解决方案提供支持。为了达到SI/EMC所需的性能,需要在产品开发的整个过程中持续的对设计进行建模和仿真。如此一来,客户即可确保其设计已通过严格的测试,同时也能保证最终产品拥有最佳的性能。 SI/EMC的优化周期 Molex的基础SI/EMC流程由4
[嵌入式]
高速数据<font color='red'>传输</font>在汽车解决方案中的应用
内置3D 梳状滤波器的解码器
  ADI最新推出的视频解码器内置12 bit分辨率3D梳状视频解码器以及150 MSPS数字转换器,支持全高清1080p输入格式。ADV7802能改善高清电视(HDTV)、视频处理器、音频/视频接收机(AVR)系统以及DVD录像机的视频图像与色彩质量。同现有的视频解码器解决方案相比,这款内置12 bit分辨率3D梳状视频解码器可为运动检测以及3D梳状滤波操作提供更好的处理分辨率。   ADV7802是12 bit分辨率解码器,包含4:4:4采样的处理管道,能支持RGB SCART输入;与现有4:2:2采样的8 bit解码器相比,ADV7802为设计人员提供更高级别的系统性能。同时增加了内置接口,既能支持SDR DRAM,还支持
[新品]
ARM片外FIash存储器IAP解决方案
引 言 以ARM芯片为处理器核的嵌入式应用系统,以其小体积、低功耗、低成本、高性能、丰富的片内资源以及对操作系统的广泛支持,得到了人们越来越多的青睐。在应用编程IAP(InApplicatAion Program)就是这样的自修改程序。它先在RAM存储器中写人数据值,然后使PC指向该存储段,把该段作为程序段来执行。很多ARM7芯片自带IAP处理器,应用其自带的IAP处理器可以方便地对其片内集成的Flash存储器进行在应用编程,但几乎所有的ARM核芯片均不支持片外IAP处理,因为片外Flash存储器是用户选型的,芯片生产厂家无法先知先觉,而不同Flash存储器其编程时序也不尽相同,导致芯片生产厂家无法提供通用的IAP代码。那么,如
[单片机]
ARM片外FIash<font color='red'>存储</font>器IAP解决方案
东芝存储器株式会社推出采用64层3D闪存的客户级SATA SSD
东京-东芝存储器株式会社作为存储器解决方案的世界领导者,今日宣布推出SG6系列,这是一款全新阵容的客户级SATA SSD,它采用了东芝存储器株式会社先进的64层3bit-per-cell TLC(1个存储器存储单元可存放3比特的数据)BiCS FLASH™存储器。东芝存储器株式会社于今日起针对PC OEM客户进行小规模样品出货,并将从今年第四季度(10-12月)开始逐步扩大出货规模。 全新SG6系列SSD采用频宽6.0Gbit/s 的SATA 3.3规格,顺序读取和顺序写入的传输性能分别高达550MB/s和535MB/s 。并且,得益于闪存管理的改进和闪存性能的提升,其运行功耗比前一代产品 最高降低40%左右。功耗方面的改进延
[嵌入式]
东芝<font color='red'>存储</font>器株式会社推出采用64层3D闪存的客户级SATA SSD
坚固可移动和实时管理的手持工业计算机
新汉MRC 2x00系列是专为移动工作环境中需要实时信息管理而设计的,无需通过桌上型计算机或笔记本电脑处理。其集成的无线技术,使现场技术人员便利实时进行工作分配,部件订购,搜索及进行工作记录报告。 随着功能强大的3.5G移动宽带技术,MRC 2x00系列可以有效利用现有宽带的同时扩大服务范围。此外,MRC2200/2300系列拥有较长时间的电池使用寿命,也可以热插拔电池,进一步提升应用范围。IP-54等级坚固设计使MRC 2x00系列适用更严苛环境持久应用。在物流和仓库管理应用中MRC 2x00系列可以内置条码扫描仪和RFID设备接口。 板载GPS和阳光下易读的LCD屏,使MRC 2100/2300系列成为户
[工业控制]
坚固可移动和<font color='red'>实时</font>管理的手持工业计算机
受惠AMD Ryzen处理器,高速传输接口芯片厂商祥硕营收创新高
原标题:受惠AMD第二代Ryzen处理器出货高峰,高速传输接口芯片厂商祥硕营收创新高、 超微(AMD)处理器发威,高速传输接口芯片厂商祥硕、受惠于AMD第二代Ryzen处理器及400系列高速传输芯片组出货放量,3月业绩已创下历史新高,市场预估第2季单月营收可望再次改写记录。 处理器大厂AMD在4月推出第二代Ryzen处理器,目前华硕已抢先推出ITX X470,测试网站给予高度评价,而祥硕与AMD长久合作关系,前一代处理器其300系列芯片组便由祥硕独家提供,在市场销售创下佳绩,此次400系列高速传输芯片组仍由祥硕为AMD量身打造独家供应,性能更胜上一代。 该高速传输芯片组在第2季进入出货高峰期,祥硕3月合并营收2.98亿
[半导体设计/制造]
浅谈逻辑分析仪存储深度的重要性及存储模式
逻辑分析仪存储深度的重要性 现代逻辑分析仪的大部分带宽都非常庞大。例如,广州致远电子有限公司的LAB 6052逻辑分析仪的带宽为500 MSps x 32位,即16 Gbps。无论是数据传输(USB2.0数据速率是480 Mbps)还是数据分析(PC软件)过程,都无法实时完成。通过这种方式,逻辑分析仪只能暂时将数据存储在存储器中,然后将其提供给分析仪进行分析。 如果需要不间断地捕获数据流,则逻辑分析器需要有足够的内存来记录整个事件。存储深度与采样速度密切相关。您需要的存储深度取决于要测量的总时间跨度和所需的时间分辨率。单次测量时间越长,采样频率越高,您需要的存储深度就越大。 在传统模式下,存储深度*采样分辨率=采样时间,这
[测试测量]
浅谈逻辑分析仪<font color='red'>存储</font>深度的重要性及<font color='red'>存储</font>模式
OTSL推出新型3D实时毫米波雷达模拟器 用于自动驾驶
据外媒报道,短距离无线系统和嵌入式系统开发商OTSL宣布推出用于自动驾驶的新型3D实时毫米波雷达模拟器AMMWR2(Advanced Millimeter Wave Radar Simulator 2,高级毫米波雷达模拟器2)。 图片来源:OTSL 自2017年将AMMWR作为全球首款支持动态实时仿真的自动驾驶传感器模拟器软件推向市场以来,OTSL一直在积极投资开发。随着AMMWR2的发布,OTSL展示了其在开发过程中取得的功能和性能进展。该产品计划于今年年底在全球范围内出售给汽车制造商、开发、设计和生产车辆传感器的系统供应商以及开发传感器设备的半导体制造商。 OTSL及其德国分公司的首席执行官Shoji Hat
[汽车电子]
OTSL推出新型3D<font color='red'>实时</font>毫米波雷达模拟器 用于自动驾驶
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved