基于瑞萨RX62T低压电机控制评估系统实现矢量控制

发布者:TP9111最新更新时间:2022-09-20 来源: elecfans关键字:矢量控制 手机看文章 扫描二维码
随时随地手机看文章

近来广受关注的矢量控制,是以电机为控制对象的PWM 电路驱动方法。不足之处是,要增设传感器。本文介绍利用瑞萨RX62T 低压电机控制评估系统实现矢量控制的实例。

150769a2-34d7-11ed-ba43-dac502259ad0.png

这种方法是以坐标变换为中心的数学方法,所以文中会出现很多矩阵。

何为矢量控制

使电机达到最大转矩的电流控制

矢量控制通过电流控制使电机达到最大转矩,是让电机效率最大化的控制,即:在电流相同情况下,让电机的转矩达到最大。具体内容如下。

① 将电机的电流矢量分解为励磁电流分量和转矩电流分量,分别加以控制。

150769a2-34d7-11ed-ba43-dac502259ad0.png

②通过控制电机的电压和相位,调整磁通和电流相位,以实现最大转矩。

实际上是,将3 相固定坐标系电机模型转换为2 相旋转坐标系电机模型,使磁场和转矩转换为线性矢量并分别进行控制,如图1 所示。

1553ef98-34d7-11ed-ba43-dac502259ad0.png

图1

也就是,让转子产生的磁场与线圈产生的磁场形成产生最大转矩的90°电角度(适用于SPM 电机),变成对转矩分量(纯电流)的控制,是与直流电机一样的线性控制”。


 使用数学方法的理由

“矢量控制”听起来很简单,实际上是一个很复杂的过程,如图2 所示。

15964348-34d7-11ed-ba43-dac502259ad0.png

图2

定子的线圈是三维的(U 相/ V 相/W 相),而转子的永磁体是旋转的二维(N 极/ S 极)。在电流相同的情况下,计算出最大转矩是很困难的。因此,将3 相线圈变换为二维(2 相),并将其模型看作直流电机模型。在计算中,尽可能最小化不形成转矩的电流分量。将计算结果还原到3 相时,为了让电流达到目标值,将施加到各层的电压转换为通过定时器控制的PWM 输出占空比。


控制方式

矢量控制的基础是洛伦兹力。

将电机模型化

将电机转化为模型(驱动电压方程)来表示,如图3 所示,它是线圈电阻上的电压,与 电感及磁链产生的感应电压之和。

通过线圈的总磁通

磁链,也就是通过线圈(导体)的总磁通,如图4 所示,

15c32c5a-34d7-11ed-ba43-dac502259ad0.png

图4

是下述两者之和:

·线圈电感产生的磁通

·转子的永磁体产生的磁通

另外,计算对象中也包括各相线圈之间互感所产生的磁通。由图3、图4 可以推导出图5 所示的各相的电压方程。

15f4a096-34d7-11ed-ba43-dac502259ad0.png

图5

将电压3 相坐标系变换为2 相旋转坐标系

从3 相固定坐标变换为2 相旋转坐标,分两个阶段(图6)。

1610eddc-34d7-11ed-ba43-dac502259ad0.png

图6

① 3 相UVW 坐标→ 2 相固定坐标αβ。

② 2 相固定坐标αβ → 2 相旋转坐标dq。

各阶段的坐标变换矩阵如图7 所示。

164fe078-34d7-11ed-ba43-dac502259ad0.png

图7

三维坐标变换为二维坐标

如前所述,坐标变换的目的是,让转子产生的磁场与线圈产生的磁场形成90°的电角度,进而形成最大转矩。

(1)αβ 变换

与U 轴重合的是α 轴,β 轴与α 轴成90°(分别为固定轴)。

(2)dq 变换

dq 变换中,N 极为d 轴,q 轴与d 轴成9 0 °。变换后的电压模型用dq 轴表示,如图8 所示。

166feb02-34d7-11ed-ba43-dac502259ad0.png

图8

从图可见, 模型中的交流成分不见了, 说明dq 上的电流在2 相旋转坐标系中可分别适用于直流控制。而表面式永磁同步电机(SPMSM,略称为SPM电机)无论在2 相旋转坐标系中的什么位置,电感都是不变的,即Ld = Lq(图9 ),

168ecb6c-34d7-11ed-ba43-dac502259ad0.png

图9

如“CQ 无刷电机”。市售的EV(包括混合动车),一 般使用的是内置式永磁同步电机(IPMSM,略称为IPM 电机),其永磁体是嵌在转子中的。

 转矩的控制

 转矩如何变化

矢量控制的目的是改变转矩。下面, 我们来看看转矩的表现形式及相互关系。转矩是由电流产生的,其计算公式如图1 0 所示。

16a66664-34d7-11ed-ba43-dac502259ad0.png

图10

因为转矩N 是力矩(沿半径r 转动的力F),所以用矢量表示为N =r×F。图10 中出现了两种类型的转矩。a 电磁转矩:永磁体与定子线圈之间的力所产

生的转矩。b 磁阻转矩:转子磁阻的异向性(凸极作用)产生的转矩。在S PM 电机中,Ld = Lq,磁阻转矩为0 ,只要对q 轴的电流进行控制,就能控制转矩(图11)。

16cc0950-34d7-11ed-ba43-dac502259ad0.png

图11

因此,将d 轴电流指令值变为0,就能对转矩与q轴电流进行线性控制。

去除感应电压项—非干涉控制

当电压模型转换为电流模型时,q 轴的电流模型中包含了d 轴的项目,特别是与ω 成正比的项目,即干涉项。这意味着,高速转动时永磁体产生的感应电压增大,随之干涉项产生的不良影响也将扩大,导致控制性能变差。将消除项也纳入计算范围的方法叫做“非干涉控制”(图12)。

16ea707a-34d7-11ed-ba43-dac502259ad0.png

图12

非干涉控制的PI 速度控制框图如图13 所示。

174135a4-34d7-11ed-ba43-dac502259ad0.png


关键字:矢量控制 引用地址:基于瑞萨RX62T低压电机控制评估系统实现矢量控制

上一篇:PLC控制系统​调试过程中的几个解决方案
下一篇:扁线电机的绕组设计及集肤效应

推荐阅读最新更新时间:2024-10-17 17:27

基于瑞萨RX62T低压电机控制评估系统实现矢量控制
近来广受关注的矢量控制,是以电机为控制对象的PWM 电路驱动方法。不足之处是,要增设传感器。本文介绍利用瑞萨RX62T 低压电机控制评估系统实现矢量控制的实例。 这种方法是以坐标变换为中心的数学方法,所以文中会出现很多矩阵。 何为矢量控制 使电机达到最大转矩的电流控制 矢量控制通过电流控制使电机达到最大转矩,是让电机效率最大化的控制,即:在电流相同情况下,让电机的转矩达到最大。具体内容如下。 ① 将电机的电流矢量分解为励磁电流分量和转矩电流分量,分别加以控制。 ②通过控制电机的电压和相位,调整磁通和电流相位,以实现最大转矩。 实际上是,将3 相固定坐标系电机模型转换为2 相旋转坐标系电机模型,使磁场和转矩转换为线性矢量并分
[嵌入式]
基于<font color='red'>瑞萨</font><font color='red'>RX62T</font><font color='red'>低压</font><font color='red'>电机</font>控制评估系统实现<font color='red'>矢量控制</font>
浅析基于模糊PID的永磁同步电机矢量控制
永磁同步电机由于其转动惯量低、效率高、控制方式便捷等优点,已成为当今伺服系统中最佳的执行结构之一。速度、位置和电流组成了永磁同步电机伺服控制系统。实际控制的过程中,电机所带的转动惯量和负载转矩都会对系统的伺服性能造成不良的影响。高性能的永磁同步电机伺服控制系统需具备:稳态、抗干扰和鲁棒性强的特点。因此,针对永磁同步电机的控制策略需要很强的时变性和抗干扰性。 传统的控制策略有PID控制方法。PID控制策略由于其易实现、结构简单常应用于伺服系统中。但是当永磁同步电机受到外界因素干扰时,该方法往往无法保证得到理想的控制性能。目前,针对永磁同步电机的控制方法专家学者们提出了很多的方法。包括:滑模控制、智能算法控制及自适应控制等。
[嵌入式]
浅析基于模糊PID的永磁同步<font color='red'>电机</font><font color='red'>矢量控制</font>
永磁同步电机矢量控制理论
矢量控制是一种交流电机控制理论,由德国西门子公司的F.Blaschke于1971年提出。 它的基本思想是模仿直流电机的磁场定向方式,将交流电机的定子电流分解为与转子磁链同方向的励磁分量和与磁链方向正交的转矩分量,将励磁分量和力矩分量进行解耦,便于控制器实现,从而实现对交流电机的精确速度和转矩控制。 永磁同步电机矢量控制的框图如下: 图1 永磁同步电机矢量控制框图 从图1可以看出,要实现永磁同步电机的矢量控制需要以下几步: (1)测量流过电机相绕组电流Ia、Ib、Ic; (2)将Ia、Ib、Ic进行Clark变换到α-β坐标系; (3)将Ialpha-Ibeta进行Park变换得到Id、Iq (4)将目标电流和反馈电流进行P
[嵌入式]
永磁同步<font color='red'>电机</font><font color='red'>矢量控制</font>理论
使用Simulink搭建永磁同步电机空间矢量控制的方法
永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)是一种在电动汽车、工业驱动和家电等领域广泛应用的高性能电机。它具有高效率、高功率密度和良好的动态特性,得到了广泛关注和研究。 空间矢量控制(Space Vector Control,SVC)是一种用于控制PMSM的先进技术,它可以实现高精度的转矩和速度控制,并具有较低的谐波失真和高动态响应,是目前控制PMSM的主要方式之一。 电机控制是电动汽车整车控制的核心之一,也是目前发展纯电动汽车的研究热点,本文主要介绍如何使用Simulink搭建整个控制模型。大家若想深入学习电机矢量控制,可搜索相关文献,SVPWM算法在网络上可以找到很多的
[嵌入式]
使用Simulink搭建永磁同步<font color='red'>电机</font>空间<font color='red'>矢量控制</font>的方法
基于混合模型磁链观测器的异步电机矢量控制设计
一、矢量控制FOC 矢量控制(FOC, Field Oriented Control)在转子磁场定向的前提下,将定子电流分解成励磁分量和转矩分量,再利用PI调节器实现两者的独立调节得到参考电压,最后利用脉冲调制(SVPWM,Space Vector Pulse Width Modulation)生成参考电压矢量对应的六路开关脉冲去触发逆变器。矢量控制在国际上一般被称为磁场定向控制技术,即用电机自身磁场矢量的方向作为坐标轴的基准方向和坐标变换的方向来控制电动机电流的大小、方向的控制方法。 图1-1 异步电机转子磁场定向矢量控制框图 二、混合模型磁链观测器 转子磁链观测器利用定子电压、定子电流或转子转速信号观测出转子磁链的相位和幅
[嵌入式]
基于混合模型磁链观测器的异步<font color='red'>电机</font><font color='red'>矢量控制</font>设计
基于全阶模型磁链观测器的异步电机矢量控制
导读:异步电机直接矢量控制需要通过磁链观测器来获取同步角,用于控制过程中的坐标变换。同时,磁链观测器输出的估计磁链用于磁链PI调节器闭环控制。所以磁链观测器在矢量控制中显得尤为重要。 一、矢量控制FOC 图1-1 异步电机转子磁场定向矢量控制框图 二、全阶磁链观测器 图2-1全阶磁链观测器系统结构框图 全阶磁链观测器的主要思想是将感应电机模型作为参考,把状态估计的方程作为可调节部分。这两部分具有相同物理意义的输出量,利用两个部分的输出量误差再经过反馈校正通道对状态观测值进行修正,使观测值快速地跟踪上实际值。模型参考自适应系统的(Model Reference Adaptive System,MRAS)思想有效地提高了
[嵌入式]
基于全阶模型磁链观测器的异步<font color='red'>电机</font><font color='red'>矢量控制</font>
异步电机矢量控制学习笔记
导读:本期文章对异步电机矢量控制作一个系统的总结,全面分析各种实现方法的异同点。通过本次的总结,可以对FOC有更深一些的理解。 一、引言 据统计,我国有60% 左右的用电量由电动机来消耗,而其中多数用于驱动异步电机。异步电机结构简单,可靠性高又易于维护,能够适应各种复杂的环境,是当前在工业现场大量使用的驱动设备。随着电力电子器件、数字处理器等技术的发展,变频控制技术已成为提高电动机运行效率和传动性能的主要技术手段。 在过去几十年,由于交流调速系统系统性能以及效率的提升,其应用领域以及应用范围越来越广泛。高性能异步电机调速控制系统不仅能满足节电需求,提高能源效率,还可以适应工业生产的工艺需求、提高我国的自动化水平。目前变频器
[嵌入式]
异步<font color='red'>电机</font><font color='red'>矢量控制</font>学习笔记
永磁电机矢量控制算法合集
导读:本期文章主要介绍永磁同步电机矢量控制,两种控制策略(id=0和MPTA)。在相同工况条件下,比较两种控制策略各自的控制性能。 一、永磁同步电机矢量控制(FOC) 1.1永磁同步电机矢量控制策略 本文主要介绍前两种控制,后面的后期再单独介绍。 小结: 1.2工作原理 矢量控制也称为磁场定向控制。由于在永磁同步电机输入交流电时会在电机内部产生电磁转矩和耦合磁场,这会影响电机的运行并给永磁同步电机的控制带来新的问题。而矢量控制技术能够利用两次坐标变换将控制简单化。矢量控制要经过 Clark 变化和 Park 变化,先通过 Clark 变换将电机被控量从三相静止坐标系转换到两相静止坐标系,然后通过 Park 变换将
[嵌入式]
永磁<font color='red'>电机</font><font color='red'>矢量控制</font>算法合集
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved