现场控制可提高交流电机效率

发布者:upsilon30最新更新时间:2023-02-09 来源: elecfans关键字:现场控制  交流电机  效率 手机看文章 扫描二维码
随时随地手机看文章

到2035年,世界每年将消耗超过35万亿千瓦时的电力,而21年略低于2015万亿千瓦时。目前,近三分之一的电能用于为工业生产中使用的电机供电。这些电机中的许多基于简单的交流设计,因为它们成本相对较低且易于驱动。它们在能源使用方面也非常低效,尤其是在低速时。然而,这种交流电机本身并不是浪费。通过正确的电子控制形式,它们的效率可以大大提高。使用当今可用的控制技术,可以将给定工作水平的能耗降低多达60%。


目前使用的最简单的控制技术是伏特/赫兹。它在概念上既简单又易于在基本微控制器上实现。核心算法利用了交流电机设计的核心特性。每个电机都有一个特征的磁化电流,以及由此产生的最大磁通量和扭矩。这些属性通过伏特/赫兹比相关。电机通过围绕移动转子布置的定子线圈的开关转动,从而转动机械负载。线圈之间的切换迫使转子的磁化元件以平行方式转动,以移动到磁场保持平衡的稳定状态。


线圈切换频率的增加反过来又会提高速度。但是,如果没有相应的电能增加,施加的扭矩就会下降。伏特/赫兹控制提供了一种简单的解决方法,即随着频率的上升而增加线路电压,使转矩可以保持在恒定水平。不幸的是,这种关系在低速时并不是特别一致。需要更高的电压才能在低速时保持高扭矩,但效率会下降并增加线圈饱和和过热的可能性。


磁场定向控制提供了一种优化电机控制的方法,特别是在低速时,并且还提供了使电机定位控制更加精确的能力。这增加了交流电机的整体应用范围,有助于降低工业机械的成本和运营成本。


在磁场定向或磁通矢量控制中,伏特/赫兹控制所暗示的速度和扭矩之间的联系被打破。磁场定向控制的概念可以用绕线直流电机的模型来表达,其中提供给定子和转子的电流是独立的。在该模型中,可以独立控制产生的扭矩和磁通量。由电流产生的电机组内部的磁场强度决定了磁通量。提供给转子电磁绕组的电流控制扭矩 - 当磁场试图将自身对齐到稳定状态时。


直流电机使用转子上的换向器,该换向器执行控制定子上的哪些线圈在任何时候通电的工作。换向器的设计使得电流切换到机械对齐的绕组,以在该点产生最大扭矩。因此,绕组的管理方式使磁通发生变化,以保持转子绕组与定子中产生的磁场正交。


在交流电机中,只有定子电流受到直接控制。转子通常使用永磁体来提供其磁场。这意味着磁通和扭矩依赖于相同的电流。但是磁场定向控制提供了几乎独立操作它们的能力。在实践中,定子磁通是动态控制的,以提供独立操纵扭矩的能力。通常,可以驱动定子线圈,以便它们产生扭矩或沿定子轴线施加力,这种模式不会影响旋转。这些方向分别是正交轴和直轴。为了传递运动,每个线圈依次被驱动以产生高正交力。


使用几种数学变换来提供电流和电压变化的能力,以解耦转矩和磁通。在磁场定向控制过定子不同部分的电流由矢量表示。矩阵投影将三相时间和速度相关系统转换为双坐标时不变系统。坐标通常使用符号 d 和 q 来描述,它们分别表示磁通和扭矩分量。在(d,q)参考系中,施加的扭矩与扭矩分量线性相关。


在磁场定向控制下,从电机接收电信号并合并到(d,q)坐标模型中。该模型通常相对于转子计算,使所需通量的计算更容易。用于计算的典型方法是将克拉克变换和帕克变换配对。


克拉克变换获取来自不同相位(通常是三个阶段)的电流,并使用它们来估计笛卡尔坐标系中的电流。这些系统的轴使用符号 alpha 和 beta,而不是传统的 x 和 y,以减少与空间坐标系混淆的可能性。然后将这些矢量应用于 Park 变换,以提供在旋转 (d,q) 坐标系中看到的当前矢量。三角函数是变换的核心,需要使用微控制器或数字信号处理器(DSP)。


通过克拉克变换和帕克变换,(d,q)空间中电流矢量的磁通量和转矩分量来自馈送到每个电相的电流和转子磁通位置,在算法的大多数描述中采用符号theta。这种结构适用于一系列电机。逆公园变换用于产生电压输出,然后将其用于控制三相中每一相的功率的算法中。整体结构如图1所示。

用于磁场定向控制的变换和控制块的基本配置图像

图 1:用于磁场定向控制的变换和控制块的基本配置。

相同的磁芯结构可用于控制同步电机和感应电机,只需更改磁通参考并获得转子磁通位置即可。在同步永磁电机中,转子磁通量是固定的,因为它是由永磁体决定的。感应电机需要创建转子磁通才能正常工作,因此将其作为非零值合并到磁通参考中。


磁场定向控制成功的关键是实时预测转子磁通位置。这种控制策略很复杂。在交流感应电机内部,转子的速度与驱动其旋转的磁通量的速度不匹配。转子往往会滞后,导致称为滑移速度的差异。在较旧的方案中,电机制造商使用传感器来分析转子位置,但这会导致不必要的额外成本。在实践中,可以使用来自电机内部产生的电压和电流的反馈来补偿滑差。


许多系统使用测量的反电动势来估计转子打滑。反电动势电压的大小与转子的速度成正比。但是,使用此输入直接会导致低速或静止时出现问题,并且不容易估计初始位置。从未知的转子位置启动可能会导致电机意外倒车一小段距离或完全启动故障。简单地对反电动势进行采样的另一个缺点是它对定子电阻的敏感性,而定子电阻容易随温度变化。


基于模型的间接方案可提供更高的性能。计算开销和性能之间存在很强的权衡,但总的来说,通过使用更复杂的基于模型的算法可以提高效率,尤其是在低速时。基于间接模型的方案根据可用的传感器读数估计这些值的实时值。


与反电动势估计一样,核心问题是确定电机的起点。一种解决方案是从初始状态的估计开始,从中可以得出预测输出向量的初始状态,并将其与测量的输出向量进行比较。此差值用于校正模型的内部状态向量。但是,噪声会破坏模型的稳定性。


扩展的卡尔曼滤波器可以补偿噪声和突发干扰的影响。卡尔曼滤波器的架构允许被认为具有较低不确定性的更新被赋予比估计具有较大不确定性的更新更高的权重。过滤器以递归方式工作,因此每个估计只需要一组新读数和过滤器的先前状态即可生成新状态。


卡尔曼滤波器采用两个主要阶段:预测和更新。在预测阶段,滤波器根据前一个状态计算系统的下一个状态,在运动算法的情况下,该状态提供最后已知的速度和加速度值。由此,过滤器计算当前位置的预测。


在更新阶段,将新采样的电压和电流值与其预测值进行比较。输入数据与预测越接近,误差概率越低。该误差概率馈入卡尔曼滤波器增益。在算法层面,卡尔曼滤波器依赖于许多矩阵乘法和反演。因此,在电机控制中实现扩展卡尔曼滤波器的关键是高算术性能,这与磁场定向控制的其他方面一样。


为了实现在实时电机控制情况下每秒所需的许多算术运算,需要高性能MCU或DSP。[德州仪器 (TI)] 生产的 [TMS320F2833x 系列器件专为处理交流电机应用的典型计算负载而开发,由各种片上外设支持,有助于与电源转换电子设备集成。


TMS320F2833x 围绕高性能 32 位 CPU 构建,具有浮点支持,符合 IEEE754 单精度算术标准。通过实施符合 IEEE 标准的浮点单元,TMS320F2833x 可处理非常宽的数字范围,并内置对非数字 (NaN) 和被零除等错误的支持,从而简化了算法开发。哈佛架构与双 16 x 16 乘法累加 (MAC) 单元相结合,为基于矩阵和投影的操作提供了高吞吐量。为了提高精度,可以将这些单元连接在一起以执行 32 x 32 MAC。片上外设包括一个16通道模数转换器(ADC),用于对来自电机的电压和电流反馈信号进行采样。


作为 C2000 系列 DSP 增强型 MCU 的成员,TMS320F2833x 由 TI 数字电机控制库提供支持,该库提供可配置的软件模块,可重复使用以实现各种控制策略。该库由表示为模块的功能组成,除了用于闭环操作的控制模块和用于脉宽调制 (PWM) 等功能的外设驱动器外,还提供 Clarke 和 Park 等变换。


在电机控制情况下,PWM输出控制六个功率晶体管,这些晶体管共同向三个电相提供电压和电流。每相使用半桥晶体管配置。在这些情况下用于控制的常用算法是空间矢量PWM。与更简单的PWM技术相比,这减少了谐波,并采用八种开关状态。有六个活动状态和两个零状态,每个状态都是八个对应空间向量的目标状态。状态的排列方式是,两组互补状态在任何时候都处于活动状态。一组用于三个高边功率晶体管,另一组用于低边。该算法循环切换状态,以根据磁场定向控制模型的要求将电源切换到状态。TMS320F2833x 包括适用于采用空间矢量切换的软件控制的 PWM 硬件。总共 18 个 PWM 输出中有 150 个支持高精度控制,分辨率为 2 ps。结果是一个数字控制器,需要相对较少的外部硬件来管理功率晶体管,如图<>所示。

WZ1.jpg

图 2:框图,显示了通过 F2833x 的 PWM 输出控制电源相位。


结论

利用具有必要内核和高性能构建模块的微控制器,结合 TI 数字电机控制库,设计人员已准备好驱动新一代高效交流电机。


关键字:现场控制  交流电机  效率 引用地址:现场控制可提高交流电机效率

上一篇:高压大功率电驱总成技术路线及发展趋势
下一篇:将无传感器矢量控制与BLDC和PMS电机结合使用,提供精确运动控制

推荐阅读最新更新时间:2024-11-12 22:15

Vishay IGBT功率模块在TIG焊机中提高效率并降低传导损耗
这些半桥和单开关管器件采用Trench PT IGBT技术制造,具有低VCE(ON) 和Eoff,可用于大电流逆变级 宾夕法尼亚、MALVERN 2016 年 1 月19 日 日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,发布4款专为TIG焊机设计的新型半桥和单开关管IGBT功率模块---VS-GP100TS60SFPBF、VS-GP250SA60S、VS-GP300TD60S和VS-GP400TD60S。这四款器件采用Vishay的独家Trench PT IGBT 技术制造,集电极到发射极的电压极低,只有1.10V,关断开关能量低至11mJ,可用于输出逆变级。
[工业控制]
利用EDA工具提高系统级芯片测试的效率
高度复杂的SoC设计正面临着高可靠性、高质量、低成本以及更短的产品上市周期等日益严峻的挑战。可测性设计通过提高电路的可测试性,从而保证芯片的高质量生产和制造。借助于EDA技术,可以实现可测试性设计的自动化,提高电路开发工作效率,并获得高质量的测试向量,从而提高测试质量、低测试成本。 半导体工艺的进步以摩尔定率的速度推动着集成电路产业的发展。随着芯片的工艺尺寸越来越细,集成度越来越高,半导体工艺加工中可能引入越来越多的各种失效。传统的利用功能仿真向量进行生产制造芯片的后期测试,虽然有的工程师认为由于充分测试过电路的功能,所以功能测试向量应该可以满足市场对产品质量的需求,然而实际上功能测试向量还很不完备,亚微米、深亚微米制造工艺条件下
[测试测量]
利用EDA工具提高系统级芯片测试的<font color='red'>效率</font>
9家光伏逆变器企业率先通过鉴衡“中国效率”认证
日前,记者在常州举办的光伏并网逆变器“中国效率”专题研讨会上获悉,目前已有阳光电源、华为、无锡上能、特变电工、株洲南车时代、京仪绿能、科诺伟业、厦门科华恒盛、许继电气9家企业二十多个型号的并网光伏逆变器产品通过了鉴衡认证中心的“中国效率”认证。这些企业均为我国光伏逆变器行业的领军企业,其率先通过中国效率认证,标志着我国逆变器技术水平进一步提高,光伏电站开发商对逆变器的选型也有了更加科学的依据。 并网逆变器是光伏发电系统中重要的功率转换设备,其转换效率的高低直接影响到系统发电量。欧美发达国家早在1990年与2004年已分别颁布实施了相关的技术标准及法规,而我国一直以来只能使用最大逆变效率来评价逆变器的性能。而实际工作中,逆变器不会一
[新能源]
LED驱动电源为什么需要高效率
高效率是LED驱动系统整体节能要求,是低温升、长寿命、高可靠的基础与保证。   (1)高效率、低损耗、低温升   如一台输出100W的LED驱动电源,当效率达95%时,其损耗是5.2W,当效率只有85%时,其损耗达17.6W,后者是前者的3.4倍,实验表明在同等条件下前者比后者温度低10~15℃。   (2) 降低LED灯的工作温度及延缓光衰   LED芯片温度的升高将导致发光器件性能的变化与电光转换效率的衰减,严重时甚至失效,有实验测试表明:LED自身温度每上升5℃,光通量就下降3%。   (3)高效率、低温升、长寿命   如果选用105℃,寿命为10000小时的高温电解电容,根据通行的电解电容寿命估算公式“每降低10度,寿命增
[电源管理]
ARM Cortex M3/M4微控制器最大效率设计三秘诀
  大部分采用Cortex-M3/M4 MCU的目标应用是便携式的,并且供电电源来自电池或能源收集系统,因此我们所探讨的大部分概念涉及如何减少系统整体能耗的技术。然而,在许多情况下,这些节能技术也是处理器应用设计的有力工具,可提供:   ●更符合成本效益的解决方案   ●更大的升级和采用新特性的设计冗余   ●有助于产品在激烈竞争市场上脱颖而出的性能和特性   小知识:Cortex-M3对比Cortex-M4   Cortex-M3架构背后的指导思路是设计一种既要满足应用的成本效益又要提供高性能计算和控制1的处理器。类似的应用包括汽车车身系统、工业控制系统和无线网络/传感器产品等。M3系列为32位的ARM处理器架构引进了多项重要特
[嵌入式]
ARM Cortex M3/M4微<font color='red'>控制</font>器最大<font color='red'>效率</font>设计三秘诀
华为宣布其光伏逆变器SUN2000全系列通过中国效率认证测试
2015年5月14日,华为宣布,公司智能组串式光伏逆变器SUN2000全系列产品通过了第三方权威检测机构北京鉴衡认证中心测试认证,检测结果显示华为全系列逆变器产品的中国效率均超过98%。 其中,SUN2000-40KTL机型在所有参与测试的厂家产品中效率最高,中国效率高达98.41%,为目前所有通过测试的集中式、组串式逆变器中效率之首。 同时通过中国效率认证的华为同系列产品还包括SUN2000-33KTL, SUN2000-28KTL, SUN2000-20KTL, SUN2000-10KTL, 均被评定为中国效率最高等级A级。 华为负责人表示,逆变器中国效率高充分证明了华为产品技术过硬,但逆变器效率最高不是我们追求的目标,系统效
[新能源]
新的双碳政策下,家电能源效率市场的新机遇
随着中国 “碳达峰”及“碳中和” 目标的提出,全产业掀起了新一轮节能减排技术创新的热潮,而近期的一轮限电政策,也让所有人开始意识到电力的宝贵之处。根据国际能源署(IEA)数据显示,家用电器是居民能源消耗的第二大来源,占住宅总能耗的20%以上(供暖后),这一比例在过去数十年一直保持增长,而如果考虑到空间供暖或制冷,这一份额还将大幅上升。 作为全球最大的家用电器生产和消费国,中国一直在通过执行严格的能效标准来提高产品的节能水平。能效标准和能效标识的实施,带来的社会效益非常明显。百度百科能效标识词条显示,实施能效标准和能源标识,在2020年节电277.5TWh,约折合节能量1.29亿吨标准煤。 电源管理将交流市电转换成直流,并提
[工业控制]
新的双碳政策下,家电能源<font color='red'>效率</font>市场的新机遇
日产推出新一代e-Power发动机,热效率大幅提升
一台好的发动力,除了功率和扭矩之外,热效率同样重要。因为发动机热效率越高,往往意味着其越省油,这在油价节节攀升的当下更具现实意义。 一周前,日产官方宣布,已在发动机效能方面取得了突破性进展,新一代e-Power动力系统的热效率将升至50%,从而可使燃油效率提升25%。 众所周知,发动机热效率一旦突破40%,向上每提升0.1%都是非常艰难的,就连丰田也只有41%。而日产却做到了50%,如此巨大的提升,引发了众多质疑。 据外媒报道,日前,日产官方再度确认可以制造出热效率达50%的发动机,并表示“拥有此技术的发动机将减少25%的油耗”。日产提出了STARC的概念技术(这一名称
[汽车电子]
日产推出新一代e-Power发动机,热<font color='red'>效率</font>大幅提升
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved