运算放大器应用设计的几个技巧
运算放大器在电路中发挥重要的作用,其应用已经延伸到汽车电子、通信、消费等各个领域,并将在支持未来技术方面扮演重要角色。在运算放大器的实际应用中,设计工程师经常遇到诸如选型、供电电路设计、偏置电路设计、PCB设计等方面的问题。在电子工程专辑网站举行的《运算放大器应用设计》专题讨论中,圣邦微电子有限公司总裁张世龙先生应邀回答与工程师进行互动。我们也基于此专题讨论,总结出了运算放大器应用设计的几个技巧,以飨读者。
一、如何实现微弱信号放大?
传感器+运算放大器+ADC+处理器是运算放大器的典型应用电路,在这种应用中,一个典型的问题是传感器提供的电流非常低,在这种情况下,如何完成信号放大?张世龙指出,对于微弱信号的放大,只用单个放大器难以达到好的效果,必须使用一些较特别的方法和传感器激励手段,而使用同步检测电路结构可以得到非常好的测量效果。这种同步检测电路类似于锁相放大器结构,包括传感器的方波激励,电流转电压放大器,和同步解调三部分。他表示,需要注意的是电流转电压放大器需选用输入偏置电流极低的运放。另外同步解调需选用双路的SPDT模拟开关。
另有工程师朋友建议,在运放、电容、电阻的选择和布板时,要特别注意选择高阻抗、低噪声运算和低噪声电阻。有网友对这类问题的解决也进行了补充,如网友“1sword”建议:
1)电路设计时注意平衡的处理,尽量平衡,对于抑制干扰有效,这些在美国国家半导体、BB(已被TI收购)、ADI等公司关于运放的设计手册中均可以查到。
2)推荐加金属屏蔽罩,将微弱信号部分罩起来(开个小模具),金属体接电路地,可以大大改善电路抗干扰能力。
3)对于传感器输出的nA级,选择输入电流pA级的运放即可。如果对速度没有多大的要求,运放也不贵。仪表放大器当然最好了,就是成本高些。
4)若选用非仪表运放,反馈电阻就不要太大了,M欧级好一些。否则对电阻要求比较高。后级再进行2级放大,中间加入简单的高通电路,抑制50Hz干扰。
二、运算放大器的偏置设置
在双电源运放在接成单电源电路时,工程师朋友在偏置电压的设置方面会遇到一些两难选择,比如作为偏置的直流电压是用电阻分压好还是接参考电压源好?有的网友建议用参考电压源,理由是精度高,此外还能提供较低的交流旁路,有的网友建议用电阻,理由是成本低而且方便,对此,张世龙没有特别指出用何种方式,只是强调双电源运放改成单电源电路时,如果采用基准电压的话,效果最好。这种基准电压使系统设计得到最小的噪声和最高的PSRR。但若采用电阻分压方式,必须考虑电源纹波对系统的影响,这种用法噪声比较高,PSRR比较低。
三、 如何解决运算放大器的零漂问题?
有网友指出,一般压电加速度传感器会接一级电荷放大器来实现电荷——电压转换,可是在传感器动态工作时,电荷放大器的输出电压会有不归零的现象发生,如何解决这个问题?
对此,网友“Frank”分析道,有几种可能性会导致零漂:1)反馈电容ESR特性不好,随电荷量的变化而变化;2)反馈电容两端未并上电阻,为了放大器的工作稳定,减少零漂,在反馈电容两端并上电阻,形成直流负反馈可以稳定放大器的直流工作点;3)可能挑选的运算放大器的输入阻抗不够高,造成电荷泄露,导致零漂。
网友“camel”和“windman”还从数学分析的角度对造成零漂的原因进行了详细分析,认为除了使干扰源漂移小以外还必须使传感器、缆线电阻要大,运放的开环输入阻抗要高、运放的反馈电阻要小,即反馈电阻的作用是为了防止漂移,稳定直流工作点。但是反馈电阻太小的话,也会影响到放大器的频率下限。所以必须综合考虑!
而嘉宾张世龙则建议,对于电荷放大器输出电压不归零的现象,一般采用如下办法来解决:
1)采用开关电容电路的技巧,使用CDS采样方式可以有效消除offset电压;2)采用同步检测电路结构,可以有效消除offset电压。
关键字:运算放大器 应用技巧
引用地址:
运算放大器应用技巧
推荐阅读最新更新时间:2024-11-11 22:10
MSP430应用技巧5:解决CCS中文字体小的问题
在使用CCS新建工程的时候,会发现当我们键入中文字体的时候,文字的字号比较小,我们可以通过下面方法来解决。 1、Windows-Preferences 2、General-Appearance-Basic 3、双击Text Font选项 4、在下面出现的对话框中,将字体改为仿宋即可。
[单片机]
共模半导体推出可以替代ADI的 AD8606的5V精密CMOS 运算放大器GM45012
『新品发布』共模半导体推出可以替代ADI的 AD8606的5V精密CMOS 运算放大器GM45012 GM45012 是双路的轨到轨输入和输出,单电源供电的运算放大器。它具有非常低的失调电压,低输入电压(2.7V-5.5V)和电流噪声,以及宽信号带宽。 GM45012的应用范围包括光学控制回路、便携式和环路供电仪器仪表,以及便携设备中的音频放大等。 关于产品 GM45012 放大器结合了低失调,低噪声,极低输入偏置电流和高速性能特点,使其在多种应用中都极具价值。无论是滤波器、积分器、光电二极管放大器还是高阻抗传感器,都可以从这些综合性能优势中获益。音频和其他交流应用则受益于它的宽广带宽和低失真特性。 GM450
[模拟电子]
精准运算放大器可在140V 电源工作
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) – 2014 年 8 月 4 日 – 凌力尔特公司 (Linear Technology Corporation) 推出 LTC6091 和 LTC6090-5,这是 LTC6090 精准运算放大器系列新增加的两款器件,该系列器件能够以高达 140V (±70V) 的电源电压工作。双通道 LTC6091 具备单独的输出停用引脚,从而非常适合高压多路转换应用。去补偿单通道 LTC6090-5 放大器提供更高的速度,并可稳定在增益为 5 或更高的情况下。 LTC6090、LTC6090-5 和 LTC6091 兼具宽电源电压范围、高精准度和低噪声特点。输入失调电压在整个温
[模拟电子]
36V超低噪声精准运算放大器在0.1Hz至10Hz频率范围噪声为30nVP-P
2016年8月17日,凌力尔特公司 (Linear Technology Corporation) 推出精准运算放大器 LT6018,该器件在 0.1Hz 至 10Hz 频率范围内噪声为 30nVP-P,最大输入失调电压为 50 V。LT6018 专门对低频噪声敏感的应用而设计,具非常低且不到 1Hz 的 1/f 拐角频率。低输入失调电压使该器件在整个温度和输入共模范围内保持 0.5 V/ C 最大 TCVOS 值和 124dB 最小 CMRR 值。开环增益典型值为 142dB,从而使该器件能够实现低于 1ppm 的非线性度。 LT6018 提供 15MHz 增益带宽积,运用转换增强电路实现高达 30V/ s 的转换率。该器件吸
[模拟电子]
使用追踪电源来提高信号链性能
本文阐述了直流偏置电源对敏感模拟应用中所使用运算放大器 (op amp) 产生的影响,此外还涉及了电源排序及直流电源对输入失调电压的影响。另外,本文还介绍了一种通过线性稳压器(一般不具有追踪能力)轻松实施追踪分离电源的方法,以帮助最小化直流偏置电源带来的一些不利影响。 在许多运算放大器电路中,直流偏置电源会影响运算放大器的性能,特别是在与高位计数模数转换器 (ADC) 一起使用或者用于敏感传感器电路的信号调节时。直流偏置电源电压决定放大器的输入共模电压以及许多其他规范。 在上电期间,必须协调直流偏置电源的顺序来防止运算放大器锁闭。这样会毁坏、损坏或者阻止运算放大器正常运行。本文解释了追踪电源对运算放大器的重要性,并介绍了一种利用
[电源管理]
精密运算放大器助力工业电子控制精度
工业电子控制的发展要求有测量和精确控制设备位置、角度和旋转的能力。这些应用,如装配机器人、表面和阀门致动器,不仅有潜力提供更高质量的成品,还可以让工人从恶劣的环境中撤离,提高安全。 随着应用从过去的纯机械转向现在的混合机械和电气系统,机械工业设备必须在广泛变化的条件下运行,这提出了挑战。为使工业集成电路能够实现这些能力,在各种环境条件下的精度是绝对要求。这些新系统必须在相同的环境中运行,并且具有与它们所替换的机械系统相同或比其更高的可靠性。 当我们想到机械系统时,首先想到的是运动。一些东西需要转动,它需要向上、向下、向左或向右移动。使用数字控制实现真实世界运动的一个关键要素是解析器,解析器控制系统的运动。驱动解析器的关键半
[嵌入式]
德州仪器运算放大器为工业应用实现业界最高精确度测量
日前,德州仪器 (TI) 宣布推出业界首款 36 V 轨至轨输入输出 (RRIO) 运算放大器,其可在无需使用自动归零技术的情况下实现高精度失调电压与漂移。该 OPA192 在整个规定温度范围内可实现稳定的失调电压漂移,无需系统级校正。 快速建立时间、高输出驱动器与高精度相结合,可帮助设计人员使用该器件驱动高电压、高精度数据采集系统中的模数转换器 (ADC),从而可充分满足测量测试、工业传感器及控制等应用需求。如欲了解更多详情或订购样片与评估板 (EVM),敬请访问: www.ti.com.cn/opa192-pr-cn 。 OPA192 的主要特性与优势: • 业界领先的高精度:该器件采用 TI 专利封装级微调
[测试测量]
有关运算放大器电动势的那些事儿
问:可以用+10V单 电源 为运算放大器供电吗?还是必须使用±5V电源? 答:这个问题介于非常见问题(RAQ)和常见问题(FAQ)之间,值得探讨。对,您可以使用+10V电源,不是必须得使用双极性±5V电源,除非您想这么做。双极性电源可以让事情变得简单,但您必须了解清楚使用每种电源电压方案的含义。 无论您把它称作电源电压、电位差还是电动势(我喜欢电动势这个称呼)都无关紧要,重要的是放大器电源引脚上的电压。运算放大器没有地引脚,因此无法区别+10V、±5V或+7V/–3V;每种情况中,电源引脚上都是10V电压。然而,电源电压决定放大器的工作点。工作点通常是电源的中间电源电压。+10V单电源情况下的工作点为+5V,±5V电源情况下
[电源管理]