搞懂PID控制原理就这么简单

发布者:PositiveEnergy最新更新时间:2023-10-24 来源: elecfans关键字:PID控制  微分  积分 手机看文章 扫描二维码
随时随地手机看文章

很多朋友觉得PID是遥不可及,很神秘,很高大上的一种控制,对其控制原理也很模糊,只知晓概念性的层面,知其然不知其所以然,那么本期从另类视角来探究微分、积分电路的本质,意在帮助理解PID的控制原理(PID:P表示比例控制;I表示积分控制;D表示微分控制)。


在认清微分、积分电路之前,我们都知道电容的特性:电容的电流超前电压相位90°,很多教材都这么描述,让人很费解,其本质又是什么呢?


要彻底掌握微分、积分电路或PID控制思路,首先得了解电容。

电容就是装载电荷的容器,从微观角度看,当电荷流入容器时,随着时间的变化极间电场逐渐增大;以图1为例:

①充电开始时Uc=0V,压差△U=Ur=Ui,此刻容器内无电荷,也就无电场排斥流入的电荷;所以电流Ic最大,表现为容抗最小,近似短路;

②当Uc上升,压差△U开始减小,该过程形成电场,容器开始排斥流入的电荷;电流Ic逐渐减小,表现为容抗逐渐增大;

③当Uc=Ui,压差△U=Ur=0V,此刻容器内电场最强,以最大排斥力阻止流入的电荷;电流Ic=0,表现为容抗最大,近似开路。

dff01336-080c-11ee-962d-dac502259ad0.png

图1:电容容器充电模型

当电荷流出容器时,随着时间的变化极间电场逐渐减小;该放电过程的电容可看成是一个内阻为0的电压源,以图2为例(移除电源并接地):

①放电开始时Uc=Ui,此刻容器内充满电荷,因此电场最强,而电阻不变,则放电电流Ic最大(方向与充电相反),电阻两端的电压Ur=Uc,则Ur=Ui;

②当Uc下降,该过程电场减弱,放电电流Ic逐渐减小,Ur=Uc也逐渐减小;

③放电耗尽Uc=0V,此刻容器内无电荷,因此无电场,Ur=0V。

e00ec8bc-080c-11ee-962d-dac502259ad0.png

图2:电容容器放电模型

电容就好比水桶一样,流入的水流无论是大还是小,水位的变化一定是从最低位开始连续上升的;而电容内的电荷也是逐渐从0开始积累起来的,积累过程与自然常数e有关系,这里就不深入讨论了。

图3就是电容充放电的电压-电流曲线。

e0318460-080c-11ee-962d-dac502259ad0.png

图3:电容充放电,电压-电流曲线

联系前面的分析,可总结为:

①电容电压不能突变,电流可突变(教材的定义是电容的电流与电压的变化率成正比);

②充电过程中的电容可等效成一个可变电阻,放电过程中的电容可等效成一个电压源;

③电容电流反映的是单位时间内流动的电荷量,电容电压(或电场)反映的是电荷量的多少。通俗的理解就是流动的电荷才会导致电荷量多少的变化(与①相吻合);用数学语言描述则是电容的电流超前电压相位90°;

④电容充放电速度与电容和电阻大小有关。

对电容充分了解之后,首先我们先来认识最简单的分压电路,如图4根据欧姆定律VCC=2.5V,该纯阻性的分压电路就是比例运算电路的雏形。

e0498af6-080c-11ee-962d-dac502259ad0.png

图4,:分压电路

如图5,我们把R2换成104(0.1μF)电容,C1电容充满电后近似开路,VCC=5V;该电路就是积分运算电路的雏形。那么把5V改成信号源就构成了低通滤波电路。

e05d1828-080c-11ee-962d-dac502259ad0.png

图5:积分电路

如图6为上图的充电波形,红色表示5V的波形,蓝色表示VCC的波形,因为电容充电时的容抗由小变大直至开路,所以分压VCC也由小变大直至为5V。而且电容充电需要一定的时间,导致VCC的波形要缓一些。(该5V是开关电源上电软启动时的输出波形)


e07d86b2-080c-11ee-962d-dac502259ad0.jpg

图6:积分电路波形

把图4图5组合就得到图7的电路,这就是我们经常使用的PI电路(比例积分),在参考电压或分压电路里很常见,加电容的目的就是增加延时性,稳定VCC的电压不受5V波动而波动,VCC=2.5V。

e098d44e-080c-11ee-962d-dac502259ad0.png

图7,:PI电路

把图5中电容和电阻的位置交换一下得到如图8的电路,C1电容充满电后近似开路,VCC=0V;该电路就是微分运算电路的雏形。那么把5V改成信号源就构成了高通滤波电路。

e0ba128a-080c-11ee-962d-dac502259ad0.png

图8:微分电路

如图9为上图的充电波形,红色表示5V的波形,蓝色表示VCC的波形,因为电容充电时的容抗由小变大直至开路,所以分压VCC由大变小直至为0V。也就是红色波形从0开始跳变一瞬间,VCC已经是最大值,所以微分有超前预判的性质(反映的是输入信号的变化率)。

e0d7d0f4-080c-11ee-962d-dac502259ad0.jpg

图9:微分电路波形

如图10为(反相)比例运算电路。

e10294a6-080c-11ee-962d-dac502259ad0.png

图10:比例运算电路

如图11,Uo与Ui成线性关系。

e1136f56-080c-11ee-962d-dac502259ad0.png

图11:比例运算电路波形

如图12、图13为微分运算电路的充放电过程:

充电过程的电容C1可等效成一个可变电阻,C1开始充电时的容抗为0,电压不可突变则电压为0,运放-输入端得到的分压为正最大峰值,于是Uo为运放的负最大峰值,随着电容充满电,U0逐渐变为0。

e12962de-080c-11ee-962d-dac502259ad0.png

图12:微分运算电路-充电

放电过程的电容C1可等效成一个电压源,且电压不可突变,此时电流反向为最大值,R1电压瞬间反向也为最大值,运放-输入端得到的分压则为负最大峰值,于是Uo为运放的正最大峰值,随着电容放完电,U0逐渐变为0。

e14d7584-080c-11ee-962d-dac502259ad0.png

图13:微分运算电路-放电

如图14为微分运算电路的输入输出波形,联系前面的分析结果,则Uo反映的是Ui的变化率,这样就达到了预判超前的效果。

e16c2754-080c-11ee-962d-dac502259ad0.png

图14:微分运算电路波形

如图15为微分运算仿真电路,为了防止运放出现饱和,必须限制输入电流,实际使用时需要在电容C1输入端串联一个小电阻R2。串联电阻后的电路已经不是理想微分运算电路了,但是只要输入信号周期大于2倍RC常数,可以近似为微分运算电路。

e17c64de-080c-11ee-962d-dac502259ad0.png

图15:微分运算仿真电路

如图16为微分运算仿真电路波形,其中IN-为运放-输入端的波形。

e18ef0f4-080c-11ee-962d-dac502259ad0.png

图16:微分运算仿真电路波形

如图17、图18为积分运算电路的充放电过程:

充电过程的电容C1可等效成一个可变电阻,C1开始充电时的容抗为0,电压不可突变则电压为0,运放-输入端得到的分压为0,于是Uo为0,随着电容充满电,运放-输入端得到的分压为正最大值,U0为运放的负最大峰值。

e1b8e508-080c-11ee-962d-dac502259ad0.png

图15:积分运算电路-充电

放电过程的电容C1可等效成一个电压源,且电压不可突变,运放-输入端得到的分压也不可突变,随着电容放完电,于是Uo由负最大峰值逐渐变为0。

e1d6beac-080c-11ee-962d-dac502259ad0.png

图16:积分运算电路-放电

如图17为积分运算电路的输入输出波形,联系前面的分析结果,则Uo反映的是Ui的积累过程,这样就达到了延迟稳定的效果。

e1eef526-080c-11ee-962d-dac502259ad0.png

图17:积分运算电路波形

如图18为积分运算仿真电路,为了防止运放出现饱和,实际使用时需要在电容C2两端并联一个电阻R3。并联电阻后的电路已经不是理想积分运算电路了,但是只要输入信号周期大于2倍RC常数,可以近似为积分运算电路。

e200e524-080c-11ee-962d-dac502259ad0.png

图18:积分运算仿真电路

如图19为积分运算仿真电路波形,其中IN-为运放-输入端的波形。

e21a1260-080c-11ee-962d-dac502259ad0.png

图19:积分运算仿真电路波形

要点:

①微分、积分运算电路利用了电容充放电时其电压不可突变的特性达到调节输出的目的,对变化的输入信号有意义;

②微分D控制有超前预判的特性,积分I控制有延迟稳定的特性,在PID调节速度上,微分D控制>比例P控制>积分I控制;


关键字:PID控制  微分  积分 引用地址:搞懂PID控制原理就这么简单

上一篇:特定条件下转速越高电机的性能是不是越好?
下一篇:西门子PLC指针类型与间接寻址教程

推荐阅读最新更新时间:2024-11-08 12:01

积分波微磁场治疗仪上市
    在日前举行的“第七届健康中国论坛”上获悉,可用于治疗心脑血管疾病的医疗器械——积分波微磁场治疗仪日前获得上市许可。     据了解,该积分波微磁场治疗仪通过将特定波形的积分脉冲微磁场作用于劳宫穴及涌泉穴,对这两个穴位产生按压作用和感应微电流,以改变细胞膜的通透性,对轻中度原发性高血压病服药患者发挥血压调节作用。其中采用的生命核由美国Biomobie实验中心的生化、电子、通讯、医学领域的专家联合研发。它可通过提升内皮祖细胞数量和功能来促进新血管组织生成,进而改善和恢复心血管供血功能。     据上海复旦大学药学院院长朱依谆介绍,对生命核的测试结果显示,经过生命核每次8分钟的刺激,体外培养人脐静脉的内皮细胞增殖数量比对照
[医疗电子]
低功耗的c语言编程,关于低功耗msp430PID控制电机转速的C程序
#include #include #include unsigned int cap_tar,cap_first,cap_last,time,pluse,flag=0,temp1; float speed,Uk,vis=0,temp2=0; /******************************************* 函数名称:定时器中断服务函数 功 能:用于捕捉传感器的脉冲信号 参 数:无 返回值 :无 ********************************************/ #pragma vector=TIMERA0_VECTOR __interrupt void timerA0(void
[单片机]
技术文章—积分电路原理:放大器与电容的变身
在网上看到一篇对积分电路以及如何理解电容作用相当不错的文章,可以作为定性研究积分电路的一种方法,转载供学习参考。 将反相放大器中的反馈电阻,换作电容,便成为如图一所示的积分放大器电路。对于电阻,貌似是比较实在的东西,电路输出状态可以一目了然,换作电容,由于充、放电的不确定性,电容又是个较“虚”的物件,其电路输出状态,就有点不易琢磨了。 图一 积分电路的构成及信号波形图 想弄明白其输出状态,得先了解电容的脾性。电容基本的功能是充、放电,是个储能元件。对变化的电压敏感(反应强烈),对直流电迟钝(甚至于无动于衷),有通交流隔直流的特性。对看待世界万物都是呈现电阻特性的人来说,也可以将电容看成会变化的电阻,由此即可解开积分电路
[电源管理]
技术文章—<font color='red'>积分</font>电路原理:放大器与电容的变身
基于自适应模糊PID控制的太阳光跟踪伺服系统
0 引言     太阳能以其不竭性和环保优势已成为当今国内外最具有发展前景的新能源之一。高效采集太阳能是太阳能光伏发电的关键技术之一,本文以其广泛利用的基于步进电机的双轴跟踪伺服系统为研究对象,在传统PID控制器的基础上,结合模糊控制理论,设计一种自适应模糊PID控制器,并在Simulink环境中建立了方位角跟踪传动机构仿真模型并完成了仿真。 1 自适应模糊PID控制策略分析     在工业生产过程中,由于操作者经验不易精确描述,传统PID方法受到局限。运用模糊数学的基本理论和方法,把规则的条件、操作用模糊集表示,从而运用模糊推理即可自动实现对PID参数的最佳调整,并以此实现自适应模糊PID控制。     PID控制器能够在保证
[嵌入式]
什么是积分电路
积分电路如下图所示: 电路结构如上图,积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于或等于10倍于输入波形的宽度。   输出信号与输入信号的积分成正比的电路,称为积分电路。   原理:从图得,Uo=Uc=(1/C)∫icdt,因Ui=UR+Uo,当t=to时,Uc=Oo.随后C充电,由于RC≥Tk,充电很慢,所以认为Ui=UR=Ric,即ic=Ui/R,故   Uo=(1/c)∫icdt=(1/RC)∫Uidt   这就是输出Uo正比于输入Ui的积分(∫Uidt)
[模拟电子]
什么是<font color='red'>积分</font>电路
基于瑞萨单片机自动寻迹智能车的设计
随着计算机、通信、传感器等技术的发展,智能车成为汽车发展的趋势。传感器技术在智能车的应用中越来越广泛,如在夜间、雾天、高危高污染等环境下的行驶。智能车将成为人们生活的一部分。文中以瑞萨智能车大赛为背景,设计了一种以16位微控制器H8/3048F作为小车的控制核心,采用红外反射传感器检测路面引导线,能根据给定参数行驶的电动车。文中从硬件和软件方面详细阐述了智能车工作原理和设计方法,设计的小车具有电路设计简单、软件控制高效等优点。 1 系统总体设计方案 本智能车利用车体前方的光电传感器采集赛道信息、后轴上的光电编码器采集车轮转速的脉冲信号。这些信号经单片机调理后,用于控制小车的运动。同时,内部模块产生的PWM波驱动直流电机,对
[单片机]
基于瑞萨单片机自动寻迹智能车的设计
基于LabVIEW的暖通空调数据采集控制系统设计
引言 LabVIEW大量应用在自动控制领域,对于HVAC系统中采用LabVIEW作为上位端软件还不多见,但随着LabVIEW 7 Express的发布,LabVIEW已经开始逐渐渗透到各个领域。在笔者所在专业HVAC自动控制领域使用LabVIEW后发现,其功能十分强大,节省系统开发时间,非常适合工程开发人员使用。笔者结合近来开发的一套HVAC系统,对LabVIEW在HVAC数据采集控制系统的应用做个介绍。 1 系统总体结构 HVAC中有大量数据需要采集,通过对数据的采集,来对各项系统参数进行调整。本系统主要由水系统、风系统、控制系统组成。 ● 水系统包括:水冷式冷水机组,冷却塔,膨胀水箱,冷冻水泵,冷却水泵,三通调节阀、
[测试测量]
基于LabVIEW的暖通空调数据采集控制系统设计
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved