车载充电机PWM软开关DC-DC变换器设计实现

发布者:快乐时刻最新更新时间:2024-01-26 来源: elecfans关键字:车载充电机  DC-DC变换器 手机看文章 扫描二维码
随时随地手机看文章

针对车载充电系统,首先指出DC-DC变换器设计要求,并分析传统原边移相控制全桥DC-DC变换器固有的不足,再从主电路拓扑、驱动方式和控制策略三个方面,详述车载充电机中PWM软开关DC-DC变换器研究进展。最后,剖析现有PWM软开关DC-DC变换器技术方案的优势与不足,并指出未来工作方向以实现DC-DC变换器系统效率全面提升。


电动汽车(Electric Vehicles, EV)利用动力电池组的储能为电驱动系统提供能量,通常该电池组通过充电机接入工频电网进行充电,其中车载充电机以其体积小、成本低及便捷性被广泛使用。由于单级车载充电机在输入功率因数和输出精度上不易同时满足设计需求,因而只适用于铅酸电池的充电。


图1所示为应用广泛的车载充电机两级功率架构。前级AC-DC变换器通常为升压型变换器,实现功率因数校正和电能交直流转换,后级的隔离DC-DC变换器级联在前级AC-DC变换器输出直流母线上,进一步进行能量转换以满足动力电池组充电要求。

图1 车载充电机两级功率架构

图片

全桥拓扑兼具较高的功率密度和功率传输能力,因而被广泛采用为DC-DC变换器拓扑,且通常控制变换器开关器件运行在软开关状态以降低开关损耗,实现DC-DC变换器的高效运行。


采用脉冲频率调制的谐振变换器可实现变压器一次侧开关管的零电压开关(Zero Voltage Switching, ZVS)及二次侧整流器的零电流开关(Zero CurrentSwitching, ZCS),具有电能转换效率较高的技术特点,尤其以LLC型谐振变换器性能突出。


但是这类变换器中开关管电压及电流应力较高,存在较大的环流损耗,且变频控制方式使其分析建模困难,常用的基波分析法难以准确刻画谐振变换器特性,使得其参数设计面临较大的挑战。


另一类降低开关损耗的方法是采用PWM软开关技术,尤以原边移相(Primary-sidePhase Shifted, PPS)全桥(Full-Bridge, FB)DC-DC变换器应用广泛,它采用移相控制方式,利用电路自身参数进行谐振而实现软开关,保持了PWM技术基于恒频实现占空比可调的特点,因而广泛使用在车载充电机等应用场合,但这类变换器轻载时难以实现ZVS,致使变换器轻载效率明显降低。


由于车载充电机总体效率主要依赖于后级DC- DC变换器部分的运行效率,因此DC-DC变换器在整个充电过程中的高效运行成为车载充电机设计的关键,为此,论文重点综述车载充电机中PWM软开关DC-DC变换器的研究进展。


首先介绍电池组恒流-恒压(Constant Current-ConstantVoltage, CC-CV)充电策略及传统PPS-FB DC-DC变换器实现方案,给出车载充电DC-DC变换器的设计要求,再从主电路拓扑、驱动方式和控制策略三个方面归纳整理车载充电机后级DC-DC变换器的研究成果。经分析比较指出,目前车载充电高效PWM软开关DC-DC变换器研究亟需解决的关键技术问题,为车载充电机后级DC-DC变换器的设计与控制提供借鉴和参考。


图8 原边移相控制与PWM控制相结合的多模式控制策略

图片

分析与讨论

综合上述各种实现车载充电机DC-DC变换器高效运行方法的分析,论文对每种方法的技术特点与不足进行了总结,车载充电机中DC-DC变换器高效运行方案比较见表1。

基于优化主电路拓扑的方法可在一定程度上克服传统PPS-FB DC-DC变换器存在的不足,获得变换器效率的提升,但并不能提供较为全面的解决方案[34-40]。PWM-谐振混合型变换器虽然可以获得满意的运行效率,但仍需在拓扑方面开展深入研究以简化电路,提高变压器利用率。

值得一提的是:电流驱动型整流器具有优良的特性,但考虑峰值电流限制的因素,只适合3.3kW功率等级以下的车载充电机。对于更高功率等级车载充电机,可采用变换器模块化设计措施以提高整体输出能力,而单个变换器模块仍采用电流驱动型整流器以获得更高的转换效率。

除PPS控制方式,其他驱动方式的引入为变换器软开关运行开启了新的实现思路,其中SPS控制方式具备出色的控制性能。相比于后沿脉宽调制技术,SPS-FB DC-DC变换器可运行于CCM和DCM状态,具有良好的输出电压增益特性,尤其适用于车载充电机中;其次在SPS控制方式下,可利用变压器励磁电感扩展软开关实现范围,省去辅助电路以提高功率密度;最后,与不对称控制相同,SPS控制使变换器不存在一次侧环流问题,利于减小变换器导通损耗,且变换器运行过程对称,开关管以等占空比开通关断,不存在不对称控制中变压器易饱和的问题。

对车载充电机而言,其电池负载荷电状态、端电压等表征电池状态的参量在宽范围内变化,因此DC-DC变换器运行状态及效率表现出宽范围的时变特性。为此,文献提出一种时间加权平均效率指标,以评价充电机在整个充电过程中的效率性能,并作为变换器优化设计的依据,但该指标要求设计者熟知电池充放电特性,以确定各加权系数;而且尚需兼顾考虑到不同的电池规格,给实际应用带来了诸多不便。

此外,现有车载充电机DC-DC变换器参数设计大多依据常规的恒压输出应用场合的设计经验,尚未建立起兼顾考虑电池组不同充电模式的变换器设计流程,仍需广大科研工作者继续开展深入研究。

通常,在合理选择变换器拓扑、驱动方式并进行优化设计后,所设计DC-DC变换器可以在设计的工作点处获得较高的运行效率,但不能保证其在整个CC-CV充电过程中的高效运行,为此,需进一步从系统集成设计与控制的角度出发,设计与之匹配的控制策略,以实现变换器在宽负载范围内的高效运行。

将PPS与PWM控制相结合形成的多模式控制策略虽然可以在一定程度上提高传统PPS-FB DC-DC变换器运行效率,但PWM控制下开关器件运行在硬开关状态,变换器效率仍有较大提升空间。对于采用其他拓扑及驱动方式的DC-DC变换器,目前仍存在合理确定其工作模式组合等问题。

另外,直流母线电压自适应控制可连续调节变换器工作状态以实现最高效率点跟踪,但鉴于前级升压型变换器对其输出电压的要求,直流母线电压无法无限制的降低,单一的直流母线电压自适应控制方法的调节能力有限。因此,通过多自由度控制,如变换器直流母线电压、开关频率、复合移相控制等,实现变换器在宽范围运行工况下的高效运行将成为车载充电机DC-DC变换器重要的研究方向。

从上述分析讨论可以看出,现有车载充电机DC-DC变换器方案均存在一定的不足,仍需综合考虑主电路拓扑和驱动方式,在兼顾变换器功率密度等要求的同时,探索解决DC-DC变换器在宽电池负载范围内的低环流、宽软开关实现范围的关键技术问题。

此外,迫切需要建立和完善DC-DC变换器在整个充电过程中的运行效率综合评价指标,并根据变换器自身特点和负载特性开展优化设计研究,最后从系统集成优化设计与控制的角度,实现其在整个充电过程中的高效运行,最大程度地发挥DC-DC变换器的效能。


结论

电池组充电运行特征使车载充电机中DC-DC变换器运行状态及效率在宽范围内变化,给变换器设计带来很大挑战。本文围绕DC-DC变换器运行效率问题,归纳总结了车载充电机中PWM软开关DC-DC变换器的研究进展。


首先介绍了CC-CV充电策略对DC-DC变换器的设计要求,并揭示传统PPS-FB DC-DC变换器方案存在的技术不足。在此基础上,从主电路拓扑、驱动方式和控制策略三个方面对现有车载充电机DC-DC变换器技术方案予以分类总结,经分析讨论指出每种技术方案的优势与不足以及电流驱动型整流器与SPS控制方式的优越性。最后阐述当前研究工作在车载充电机DC-DC变换器效率评价与设计流程方面的不足,给出了变换器系统集成设计与控制的新思路。


关键字:车载充电机  DC-DC变换器 引用地址:车载充电机PWM软开关DC-DC变换器设计实现

上一篇:新能源电动汽车双向车载充电机OBC拓扑结构设计
下一篇:车规级晶振质量三大标准

推荐阅读最新更新时间:2024-11-12 18:02

一文解析车载动力电池系统及充电机充电技术
电动汽车 采用电能替代化石燃料作为动力,是未来交通的唯一长远解决方案。动力电池系统作为电动汽车的心脏,只有对其进行充分的了解,才能实现电动汽车的顺利推广。本文从国内外电动汽车主要车载动力电池的发展趋势角度出发,对比较有发展前景的锂离子电池及其电池管理系统进行了重点分析。 锂离子电池组充电机充电不均衡易使其产生过充放电问题,严重损害其使用寿命。本文提出了一种新型智能充电机充电模式,使电池组更加安全、可靠地充电机充电,能够延长其使用寿命,增加安全性,降低使用成本。 1、车载锂离子电池管理系统 作为 电动汽车 电池的监测“大脑”,电池管理系统(BMS)在混合动力电动汽车中可以实现对电池剩余电量的监测,预测电池的功率强度,便于对整
[汽车电子]
基于软开关技术的PWM变频调速系统
简介:软开关电力电子技术利用在零电压(零电流)条件下控制开关器件的导通和关断,从而在理论上实现了开关器件的零损耗。介绍一个基于软开关技术的 PWM 变频调速系统。利用8051单片机组成控制系统,来控制 IGBT 的导通和关断。在主电路中,采用辅助二极管谐振极 PWM 逆变器来实现软开关技术。 1引言 PWM(脉宽调制)功率变换技术省去了庞大笨重的工频变压器,减小了装置的体积重量,提高了电源的功率密度与整机效率。然而,在硬开关状态下工作的PWM变换器,随着开关频率的上升,一方面开关管的开关损耗会成比例地上升,使电路效率降低,处理功率的能力减小;另一方面,会产生严重的电磁干扰(EMI)。 由于功率开关管并不是理想开关,开通和关
[单片机]
基于<font color='red'>软开关</font>技术的<font color='red'>PWM</font>变频调速系统
新能源汽车车载充电机内部结构分析
OBC是为汽车动力电池充电的电力电子装置,即车载充电机,英文名字On-board charger,简称OBC。 一、定义 电动汽车车载充电机是采用高频开关电源技术,主要功能是将交流220V转换为高压直流电给动力电池进行充电,保证车辆正常行驶。同时车载充电机提供相应的保护功能,包括过压、欠压、过流、欠流等多种保护措施,当充电系统出现异常会及时切断供电。 二、内部构造 车载充电机内部可分为3部分:主回路、控制电路、线束及标准件 转化原理: 220Vac经过EMI滤波电路滤波,通过一次AC-DC转换器整流,将AC整流为DC,后经PFC功率因数校准电路进行升压,再送往开关和变压器变频升压,经过LLC过第二次整流滤波后输出高压
[嵌入式]
新能源汽车<font color='red'>车载</font><font color='red'>充电机</font>内部结构分析
对标C4D40120D,1200V SiC肖特基二极管B2D40120HC1让车载充电机更高效
车载充电机是电动汽车的核心部件,其功能是按照电池管理系统的指令,动态调节充电电流和电压参数,完成电动汽车的充电过程。作为一款电力电子设备,车载充电机功率电路主要由AC-DC和DC-DC电路组成。如图所示: 车载充电机充电框图 传统的Si器件由于其耐压和开关频率的限制,已经不能满足车载充电机日益增长的性能需求,而高耐压、低损耗且具有高速开关特性的SiC器件,正逐步取代Si器件,成为车载充电机的主流应用。 下面我们以6.6kW车载充电机为例,介绍基本半导体的SiC肖特基二极管B2D40120HC1在充电机AC-DC和DC-DC电路中的应用: 1、AC-DC电路 车载充电机输入电压通常为交流220V,AC-DC可采用
[嵌入式]
对标C4D40120D,1200V SiC肖特基二极管B2D40120HC1让<font color='red'>车载</font><font color='red'>充电机</font>更高效
一种基于电容的电磁全隔离直流电源传输电路
        高性能的电子电路要求高度洁净的电源。然而目前在供电线路上的各种电器设备会产生许多高次谐波,对供电质量造成影响。开关型稳压电源以及DC-DC变换器都在输入回路中采用开关管作为斩断电流的器件。高频变压器把脉动的电流信号由初级回路传输到次级回路,再通过采样反馈到初级,实现稳压调节。在典型的电源电路中 ,尽管输入端与输出端不共地,但高频变压器作为电磁耦合通道,其传递函数有一定的频率选择性。输入端电源窄脉冲干扰含有十分丰富的频率分量,会耦合到输出端,使电源的供电质量下降,存在使微机程序跑飞的可能性。   本文提出了一种基于电容的全隔离直流电源传输电路,它依靠几组电容存储电荷来实现传输电能。由于电路输入、输出端不存在电磁耦合
[电源管理]
一种基于电容的电磁全隔离直流电源传输电路
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved