一种基于CPLD的曼彻斯特编解码器设计

发布者:HarmoniousVibes最新更新时间:2007-07-05 来源: 电子元器件应用关键字:脉冲  归零  时延  电平 手机看文章 扫描二维码
随时随地手机看文章

  引言

  虽然计算机通信的方法和手段多种多样,但都必须依靠数据通信技术。数据通信就是将数据信号加到数据传输信道上进行传输,并在接收点将原始发送的数据正确地恢复过来。由于计算机产生的一般都是数字信号,因此计算机之间的通信实际上都属于数据通信。曼彻斯特码编解码器是1553B总线接口中不可缺少的重要组成部分。曼彻斯特码编解码器设计的好坏直接影响总线接口的性能。在数控测井系统和无线监控等领域,曼彻斯特码编解码器都有广泛应用。

  1 数据通信系统结构

  图1所示是数据通信系统的基本构成。在计算机通信中,通信双方传递的信息必须进行量化并以某种形式进行编码后才能进行传输。机内信号不论采用哪一种编码方法,它们的基本信号都是脉冲信号,为了减少信号在传输媒质上的通信带宽限制,以及噪音、衰减、时延等影响,也由于同步技术的需要,操作时都需要对简单的脉冲信号进行一些不同的变换,以适合传输的需要。这样就会产生许多不同的代码,通常有不归零电平(NRZ-L)码,逢“1”反转(NRZ-1)码,曼彻斯特码和差分曼彻斯特等。图2所示是部分编码方式的波形图。

  由图2可知,不归零码的制码原理是用负电平表示“0”,正电平表示“1”,其缺点是难以分辨一位的结束和另一位的开始;发送方和接收方必须有时钟同步;若信号中“0”或“1”连续出现,信号直流分量将累加。这样就容易产生传播错误。曼彻斯特码(Manchester)的原理是每一位中间都有一个跳变,从低跳到高表示“0”,从高跳到低表示“1”。这种编码方式克服了NRZ码的不足。每位中间的跳变即可作为数据,又可作为时钟,因而能够自同步。曼彻斯特编码特点是每传输一位数据都对应一次跳变,因而利于同步信号的提取,而且直流分量恒定不变。缺点是数据编码后,脉冲频率为数据传输速度的2倍。差分曼彻斯特码(Differential Manchester)的原理是每一位中间都有一个跳变,每位开始时有跳变表示“0”,无跳变表示“1”。位中间跳变表示时钟,位前跳变表示数据。这种方式的优点是时钟、数据分离,便于提取。

  2 曼彻斯特编解码器的设计

  可编程逻辑器件的出现为数字系统的设计带来了很大的灵活性.而VHDL (VHSIC HardwareDescription Language)是一种功能强大的硬件设计语言,可用简洁的代码来进行复杂控制逻辑的设计。为此,本文采用VHDL语言来对曼彻斯特编解码器进行描述,并用Active-HDL进行编译,最后用Synplify进行综合。

  2.1 解码

  根据曼彻斯特码的特点,可将该码的解码过程分成三部分:一是启动解码时钟,即通过检测一个数据跳变沿来使能时钟。二是对曼彻斯特码形式的数据进行解码。三是将串行数据转换成并行数据。解码器的逻辑框图如图3所示。

  该逻辑可南进程实现。输人的时钟为clkl6x的时钟,串行的曼彻斯特码的数据与单倍的时钟相对应。首先,串行的曼码由clk16x的时钟采样,之后再将采样到的数据先后存放在两个寄存器中,当两个寄存器中的值不一致时,即开始解码过程,从而完成检测数据变化的进程。分频计数进程用来产生clklx,并用分频计数的结果来实现1/4和3/4点的采样。根据曼彻斯特码的性质,对1/4和3/4点采样可以准确的恢复成NRZ码。此后在clklx的驱动下,控制字计数器开始计数,直到8个clklx之后,计数器归零。解码进程则在clkl6x的驱动下,对1/4和3/4采样点的数据进行解码,从而得到曼码相对应的NRZ码。紧接着将解码得到的每一位NRZ码移入8位的移位寄存器,当控制字寄存器计到8时(即8位移位寄存器溢出的时候),再将8位NRZ码一起输出到数据寄存器,最后输出数据寄存器中被解码好的NRZ码。

  图4所示是采用该设计的曼彻斯特码的时序仿真波形,clkl6x采用16 MHz的时钟,mdi为输入的曼码(10101100)。最后输出dout为十六进制AC,这说明该解码过程是正确的。

  2.2 编码

  编码是解码的逆过程。编码的过程也可以分为两部分:一是检测编码周期是否开始,以决定产生正跳变沿;二是对串行的数据进行编码,之后编码周期结束。编码器的输入时钟(clk2x)为2MHz。当写信号(wr)为高电平时,开始产生正跳变沿,并使clklx-enable为高电平,这样,正跳变沿产生完成即开始编码过程。将clk2x进行二分频可得到clklx,这样可使归零制的数据(nrz)与clklx相对应。此后再在clklx_enable高电平和clk2x正跳变的情况下,将归零制码(nrz)转换成相应的曼彻斯特码(meo)。最后,当写信号(wr)为低电平时,以使clklx_enable为低电平,结束编码过程。

  图5所示其编码时序仿真波形图,图中,clk2x采用2 MHz的时钟,nrz为串行输入的归零制码(10101100),meo为串行输出的曼彻斯特码。由图可见,从刚开始的跳变沿之后,输出meo也为10101100,证明编码过程正确。

  3 基于CPLD的曼彻斯特码实现

  为了确保设计的可行性,操作时必须对设计进行时序仿真。为了提高CPLD芯片的性能及资源利用率,应采用专门的综合软件来对设计进行优化和综合。本设计采用Synplify7.3进行综合,并采用Active-HDL6.1进行时序仿真。在Synplify中使用有效的代码可以优化组合逻辑、减少逻辑延时,从而提高整体性能。此外,本设计还进行了多个文件的分块设计,然后将这些文件映射到顶层文件进行综合,并运用VHDL对单个文件进行编写、仿真和优化。在用到组合逻辑时,Syn-plify会尽量避免锁存器的出现,节省逻辑单元。Synplify和其它综合软件一样,编译后所生成的电子设计交换格式文件(EDIF)可以在Active-HDL中进行编译、仿真、分配引脚和其它优化处理。因此,采用Active-HDL6.1和Synplify7.3相结合对CPLD进行设计、优化、综合,可以提高系统性能和芯片资源的利用率。

  CPLD(Complex Programmable Logic Device复杂可编程逻辑器件)的内部结构为“与或阵列”。该结构来自于典型的PAL、GAL器件结构。由于任意一个组合逻辑都可以用“与一或”表达式来描述,所以该“与或阵列”结构能实现大量的组合逻辑功能。CPLD和FPGA的主要区别如下:

(1) 布线能力

CPLD内连率高,不需要人工布局布线来优化速度和面积,较FPGA更适合于EDA芯片设计的可编程验证;

(2) 延迟可预测能力

CPLD连续式布线结构决定了时序延时是均匀的和可预测的,而FPGA的分段式布线结构则决定了其不可预测时间延迟;

(3) 集成度的不同

CPLD的集成度一般在500~50000门。而FP-GA的集成度一般在1K~10M门;

(4) 应用范围的不同

  CPLD逻辑能力强而寄存器少,适用于控制密集型系统,而FPGA逻辑能力较弱但寄存器多,适于数据密集型系统。

  CPLD和FPGA的共同优点一是规模越来越大,实现功能越来越强,同时可以实现系统集成。二是研制开发费用低,不承担投片风险,使用方便。三是通过开发工具在计算机上完成设计,电路设计周期短,同时不需要设计人员了解很深的IC知识,EDA软件易学易用。此外通过FPGA和CPLD开发的系统成熟后,还可以进行A-SIC设计,以形成批量生产。

  事实上,本设计在Xilinx公司的XC9500系列CPLD(xc95108pq100-7)芯片上进行了实现。并针对其特点对设计进行了最后的优化。该编解码器共占用了149个逻辑单元,占总逻辑资源的8%,因此,十分有利于今后对其进行完善和功能的添加。

  4 结束语

  本设计具有一定的通用性,它的逻辑大部分只涉及到编、解码器本身;而它与外部的接口十分简单,只要对其读、写并对跳变沿信号进行有效控制,就能使其正常工作。本设计十分独立,由于选用器件资源比较丰富,故对其进行功能添加也十分方便,只需添加电路设计而不必对原有电路进行修改。

关键字:脉冲  归零  时延  电平 引用地址:一种基于CPLD的曼彻斯特编解码器设计

上一篇:三星推出全球通用 全能手机电视芯片
下一篇:基于USB 2.0集成芯片的H.264解码器芯片设计

推荐阅读最新更新时间:2024-05-03 19:18

555构成的音响逻辑电平探头
如图所示为音响逻辑电平探头电路。该探头由电压比较器、多谐振荡器、压电陶瓷片HTD等组成。其中后两者组成音响电路,以音响频率的高低来判别TTL或CMOS器件电平的高低。电压比较器LM339(IC1)中的IC1-1、IC1-2各为1/4 LM339。分压网络R2、R3在VDD=6V时使分压点C的电压为Vc 1.9V,其低于IC1-1的基准电压,但又高于IC1-1的基准电压,故平时二极管D2、D3均截止,振荡器IC2不工作。当探针接触高、低电平或脉冲时,则IC1用于检测高电平,IC2用于检测低电平,输出信号相应驱使D2、D3导通,并通过R9、R10、R11对C1进行充电,使IC2起振,推动HTD发声。当探针接触高电平时,IC1-1输出信号
[测试测量]
555构成的音响逻辑<font color='red'>电平</font>探头
STC12C5608AD测脉冲宽度
/******************************************/ //PCA初始化函数 void PCA_Init (void) { //CIDL --- CPS2 CPS1CPS0 ECF CMOD = 0x80;//空闲时关闭PCA,计数时钟为Fosc/12,关闭计数器溢出中断CF //CF CR - - - - CCF1 CCF0 CCON = 0x00;//PCA控制寄存器初始化//PCA定时器停止//清除CF标志//清除模块中断标志//复位PCA寄存器 CCAPM0 = 0x21;//16位捕获模式,上升沿触发,关闭捕获中断CCF0
[单片机]
双H桥双峰双向脉冲电镀电源设计与仿真
摘要:为了使脉冲电镀电源输出频率可调,电压可调,正向脉冲开启时间宽度和负向脉冲开启时间宽度可调的双峰双脉冲。特此提出了一种绿色可靠、节能高效的新设计方案,第一个H桥采用ZVZCSPWM DC/DC变换器时输入的直流电压进行降压,变成高频交漉脉冲电压,然后经过高频变压器的隔离和耦合,再通过桥式整流滤波得到稳定的直流电压,最后经过第二个H桥进行切换,得到任意频率,任意占空比的双峰双向脉冲。实验证明应用该方案能降低开关管的开关损耗,降低元器件的要求,能将电源的效率提高到90%以上,同时由于此电源具有脉冲换向功能,在电镀时,大大增加了贵金属的利用效率。 关键词:全桥移相软开关;双H桥;双峰双向;PSIM;双向多脉冲     由于脉冲电源拥
[电源管理]
双H桥双峰双向<font color='red'>脉冲</font>电镀电源设计与仿真
理解实时频谱分析仪的频域电平触发
本应用指南介绍了使用ThinkRF实时频谱分析仪实时捕获信号时所使用的频域电平触发装置,以及其用法、建议和限制。 频域电平触发机制 如图1所示,ThinkRF实时频谱分析仪(RTSA)的数字化仪硬件部分具有嵌入式实时硬件触发机制,可提供用户定义的频域电平触发。该触发机制使用户能够在频域中定义频率范围和功率电平阈值。如果信号超出用户定义的频率范围内的 用户定义的功率水平,则该触发机制开始将时域数据存储到内存中。 图1. ThinkRF RTSA的接收机和数字化仪结构 图2说明了触发和捕获所涉及的步骤顺序。 这些步骤(在图中着重显示)分别是: 图2. RTSA的触发和捕获步骤顺序 通过应用程序或SCPI命令完成触发器设置,
[测试测量]
理解实时频谱分析仪的频域<font color='red'>电平</font>触发
一种基于三电平的单级PFC电路设计
  目前,带有功率因数校正功能的开关变换器通常分为两级结构和单级结构两种。两级结构电路具有良好的性能,但是元器件个数较多,与没有PFC功能的电路相比成本会增加。而单级PFC变换器中PFC级和DC/DC级共用开关管,只有一套控制电路,同时可实现对输入电流的整形和对输出电压的调节。但是,单级PFC电路上实际存在着一个非常严重的问题:即当负载变轻、达到临界连续状态时,多余的输入能量将对中间储能电容充电。这一过程会使中间储能电容两端的电压达到一个很高的值。这样,在电路中,对于90-265 V的交流电网,该电压会达到甚至超过1000 V。就目前的电容技术和功率器件技术而言,这么高的电压都是不实际的。因此,降低母线电容电压、适应宽电压输入场合
[电源管理]
一种基于三<font color='red'>电平</font>的单级PFC电路设计
软件无线电平台可重配置接口的实现
     随着2.5 G和3 G的出现,使多种通信体制并存发展,它们在工作频段、波形结构、调制方式、编码方式、加密方式等方面的不同,既限制了系统之间操作的互通性,也影响了用户使用的便捷性。由于软件无线电SDR(Software Defined Radio)技术可以将模块化、标准化和通用化的硬件单元和软件模块集成在一个通用的物理平台上,通过软硬件的可重构,实现多种无线通信功能,故以软件无线电为基础、面向多种通信体制的兼容信号处理技术成为研究热点。   本文研制了一个能实现多种无线通信体制的软件无线电平台。该平台如图1所示,由上位机、FPGA处理板、射频板和天线组成。其中,上位机提供用户界面,并完成基带信号处理和系统控制。FPGA
[嵌入式]
如何用电流互感器对高频脉冲电流进行有效测量
  高频脉冲电流互感器是一米无源的非接触式电流探头,专用于快变的交流电流测试,包括瞬态电流、谐波电流、高脉冲、正弦波、RF射频电流,以及其他复杂电流波形的测试。   高频脉冲电流互感器通常采用特种材料的铁芯,以及特殊的退火工艺和精密的绕线加工,实现不同应用领域的各种暂态电流的测试与量。   一、关于脉冲电流互感器   脉冲电流互感器是根据电磁感应原理,使被测电缆穿过空心线圈,当被测线缆的电流发生变化时,其周围产生的磁场也会发生变化,同时,空心线圈的磁通量产生变化,磁通量的变化就会使次级回路(互感器线圈)产生电流。   这样,就可以根据互感器的电信号测量出被测电绩的电流大小。脉冲电流互感器主要用干测量交流电流,高脉冲电流等。   二
[测试测量]
如何用电流互感器对高频<font color='red'>脉冲</font>电流进行有效测量
基于单片机的等精度数字测频
在电子技术领域内,频率是一个最基本的参数,频率与其它许多电参量的测量方案,都有十分密切的关系。因此,频率的测量就显得更为重要,而且,目前在电子测量中,频率的测量精确度最高。 1. 电子计数测频原理框图 首先,被测信号通过放大整形,形成幅度一致,形状一致是计数脉冲。然后,N将它加到闸门的一个输入端,闸门由门控信号来控制其关闭时间。计得的脉冲送至译码,再送显示器显示出来。而由晶振产生的1MHz的振荡信号经放大整形,形成方波,经多个10分频10s,1s,0.1s,0.01s,1ms,那么有fx=N/T符合测频定义。根据f=N/T。不难看出,采用计数器测频的测量误差,一方面决定于闸门时间T准不准确,即由晶振提供的标准频率的准确度△T/
[测试测量]
小广播
最新家用电子文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 电视相关 白色家电 数字家庭 PC互联网 数码影像 维修拆解 综合资讯 其他技术 论坛

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved