德州仪器——零中频接收机设计

发布者:EEWorld资讯最新更新时间:2013-09-24 来源: EEWORLD关键字:零中频接收机  德州仪器 手机看文章 扫描二维码
随时随地手机看文章

摘要

    相较传统的超外差接收机,零中频接收机具有体积小,功耗和成本低,以及易于集成化的特点,正受到越来越广泛关注,本文结合德州仪器(TI)的零中频接收方案(TRF3711),详细分析介绍了零中频接收机的技术挑战以及解决方案。

概述

    零中频接收机在几十年前被提出来,工程中经历多次的应用实践,但是多以失败告终,近年来,随着通信系统要求成本更低,功耗更低,面积更小,集成度更高,带宽更大,零中方案能够很好的解决如上问题而被再次提起。

    本文将详细介绍零中频接收机的问题以及设计解决方案,结合 TI 的零中频方案 TRF3711测试结果证明,零中频方案在宽带系统的基站中是可以实现的。

1、超外差接收机

1.1 超外差接收机问题

    为了更好理解零中频接收的优势,本节将简单总结超外差接收机的一些设计困难和缺点。

    图一是简单超外差接收机的架构,RF 信号经过 LNA(低噪声放大器)进入混频器,和本振信号混频产生中频信号输出,镜像抑制滤波器滤出混频的镜像信号,中频滤波器滤除带外干扰信号,起到信道选择的作用,图中标示了频谱的搬移过程及每一部分的功能。

    在超外差接收机种最重要的问题是怎样在镜像抑制滤波器和信号选择滤波器的设计上得到平衡,如图一所示,对滤波器而言,当其品质因子和插损确定,中频越高,其对镜像信号的抑制就越好,而对干扰信号的抑制就比较差,相反,如果中频越低,其对镜像信号的抑制就变差,而对干扰信号的抑制就非常理想,由于这个原因,超外差接收机对镜像滤波器和信道滤波器的选择传输函数有非常高的要求,通常会选用声表滤波器(SAW),或者是采用高阶 LC 滤波器,这些都不利于系统的集成化,同时成本也非常高。

    在超外差接收机中,由于镜像抑制滤波器是外置的,LNA 必须驱动 50R 负载,这样还会导致面积和放大器噪声,增益,线性度,功耗的平衡性问题。

    镜像滤波器和选择滤波器的平衡设计也可采用镜像抑制架构,如图二所示的 Hartley(1)和 Weaver(2)拓扑架构,在 A 点和 B 点的输出是相同极性的有用信号和极性相反的镜像信号,这样通过后面的加法器,镜像信号就可以被抵消掉,从而达到简化镜像滤波器的设计,但是这种架构由于相位和幅度不平衡,其镜像信号没有办法完全抑制,如证明(6),镜像抑制比 IIR。

    E指相对的电压幅度差,指相位差,如果 E和 Θ 足够小,式(1)可以简化为(2)。

    这里 Θ 是弧度,如果 E=5%,Θ=5 度,IIR 约为 26dB,如果要达到 60dB 的 IIR,需要 Θ 低于0.1 度,这是非常难以实现的,通常这种架构可以做到 30-40dB 的镜像抑制(7),所以,即使采用这种架构,镜像抑制滤波器和信道选择仍然需要仔细设计。

图二: Hartley 和 Weaver 镜像抑制架构

2、零中频接收机

2.1 零中频接收机架构及优势

    零中频接收机架构如图三,是指 RF 信号(radio frequency)直接转化到零频信号,LPF(低通滤波器)用于近端干扰信号的抑制, 在零中频架构中,在典型的相位/幅度调制中,正交的 I 和 Q 两路信号是必须的,由于两个边带信号包含了不同有用信息,必须在相位上区分。

    相较超外差架构,零中频架构优势:1:没有镜像抑制要求;2:LNA 不需要驱动 50R 负载;3:采用相同 ADC 情况下,带宽是超外差架构的两倍;4:声表滤波器和复杂的 LC 滤波器可以采用简单的低通滤波器替换,从而利于集成芯片设计,如图四,TRF3711 就是采用零中频架构,集成了I/Q 解调器,低频的可调增益放大器以及可调信道选择滤波器,实现了高集成方案。

    既然零中频接收架构如此简单,为什么到目前为止,还没有广泛应用呢?那是因为零中频接收机极易被各种噪声污染,从而影响系统性能,下面将讨论零中频接收架构的挑战。

2.2 零中频接收机的挑战及解决方案

    零中频接收机到目前为止,还只用于手持设备上,在基站上还没有应用,原因是在零中频架构上,有很多无可避免的噪声源没有办法得到抑制,本文将重点讨论闪烁噪声(1/f),直流偏置(DCoffset);I/Q 不平衡;偶次谐波。

1. 闪烁噪声(1/f)

    闪烁噪声是有源器件固有的噪声,其大小随频率降低而增加,主要集中在低频段,闪烁噪声对搬移到零中频的基带信号产生干扰,降低信噪比,在通常的零中频接收机中,增益都放在基带,射频部分(LNA 和解调器)的增益大概在 30dB 左右,所以下变频信号大概会在几十微伏,所以射频输入级(LNA,滤波器等等)的噪声就变得非常重要。

    为了更好理解闪烁噪声,我们可以来分析一个独立的 MOS 管,在输入闪烁噪声和纯热噪声情况下的噪声恶化情况,对一个典型的亚微粒 MOS 管,计算带宽为 1MHz 情况下的闪烁噪声:(3)

计算从 10Hz 到 200KHz 的带宽内的闪烁噪声如下

如果只考虑热噪声

    如果考虑闪烁噪声的情况下,噪声增加了 Pn1/Pn2=16.9dB, 而在超外差结构中,闪烁噪声将无关紧要,因为信号主要在中频进行放大。

    减少闪烁噪声的方法(3):下变频器后的链路工作在低频,这样可以选择双极性晶体管,从而能够降低闪烁噪声;另外采用高通滤波器和类直流校准也能够抑制低频的噪声。

2. 直流偏置(DC-offset)

    由于零中频接收机转换带宽信号到零中频,大量的偏置电压会恶化信号,更严重的是,直流偏置信号会使混频后级饱和,如饱和中频放大器,ADC 等。

    为了理解直流偏置的起源和影响,我们可以参照图四的接收通道进行说明。

    如图四(a)所示, 本振口,混频器口,LNA 之间的隔离度不好,Lo(本振信号)可以直接通过 LNA和混频器,我们叫做”本振泄露”, 这种现象是由于芯片内部的电容及基底耦合的,耦合的 Lo 信号经过 LNA 到达混频器,和输入的 Lo 信号混频,叫做”自混频”,这样会在 C 点产生直流成分;近似的情况如(b),从 LNA 出来的信号耦合到混频器的本振输入口,从而产生了直流分量;

    为了保证 ADC 能够采样出射频端口微伏级的电压,通常需要整个链路增益在 100dB 以上,其中25-30dB 的增益来自 LNA 和混频器的贡献。

    基于如上分析,对于自混频产生的直流偏置,我们可以做一个大概的估算,假设混频器的 Lo 输入信号为 0.63Vpp(等同于在 50ohm 系统中的 0dBm),通常情况下是-6dBm--+6dBm,假设隔离度为60dB,所以图五(a),考虑到 30dB 的射频增益,混频器的输出直流信号大概为 10mVpp,在现代通信系统中,在 LNA 输入的有用信号可以低至 30uVrms, 为了能够采样有用信号,需要中频放大70dB 左右,10mV 的直流电压也会放大 70dB,会导致混频器后的基带放大器器件饱和,产生失真,即使基带放大器是理想的放大器,也需要一个超高动态范围的 ADC 才能解决直流偏置问题,而这种动态范围的 ADC 在实际上是不可实现的。

    怎样解决零中频接收机的直流偏置问题呢?最简单的方案是采用交流耦合的方式,比如加一个高通滤波器,然而随机二进制数据的频谱在 DC 会呈现出一个峰值,很多仿真证明,为了不恶化信号,高通滤波器的频率截止点必须低于数据速率的 0.1%, 如果是 GSM信号,其数据速率为 200K,这要要求滤波器的截止频率为 200Hz 左右,这样小的值会导致,1:如果直流偏置变化,其响应会非常慢,2:需要非常大的电容和电阻, 解决的办法是采用在直流附近最小化信号能量的调制方式,比如 UMTS 制式的 BPSK 调制方式。

    另外一种常用的方法是通过算法校准的方式消除直流偏置,如图五所示的架构是 TI(德州仪器)的盲校算法,通过计算 122.88MHz 时钟周期的直流偏置量,每 1.067ms 输入信号实时抵消直流偏置,

直流累加

更新直流偏置

直流偏置更新统计

直流偏置补偿

    TI 的盲校算法可以在全温范围内把直流偏置校准到低于+/-5mV 以内,图六是基于 TRF3711 的实测试结果。

3. I/Q 不平衡(I/Q imbalance)

    对于大多数相频调制信号,采用零中频架构要求 I/Q 两路信号必须是正交,可以采用射频偏移 90图七(a)度或者 Lo 偏移 90 度度的方式图七(b),偏移 RF 信号需要承担严重的噪声—功率—增益间的平衡,通常采用偏移 Lo 的方式实现正交解调,对于 I/Q 两路信号的相位,幅度不平衡都会导致解调信号的星座图恶化。

 图七 正交生成在 RF(a),Lo(b)

    为了更好理解 I/Q 不平衡对信号的影响,设定输入信号为 Xin(t)=acosῳct+bsinῳct, a 和 b 可以任意为+1 或者-1,假设 I/Q 两路相位是相等的,即:

    和 Ɵ 代表指增益和相位差,输入信号分别乘以 Lo 的两个相位,加上低通滤波器,可以得到如下结果。

    图 8(a),(b)分别在星座图中标示了增益不平衡和相位不平衡的情况,为了更直观的说明 I/Q 不平衡的影响,在时域图进行分析,图(c)是增益不平衡造成幅度的比例因子不同,而图(d)是相位不平衡造成了一个通道的部分脉冲数据恶化另一通道的数据,但是相对镜像信号(实中频)而言,边带信号(复中频)的影响非常小。

    虽然相较镜像信号的影响,I/Q 不平衡的影响没有非常显著; 同样需要对 I/Q 不平衡信号做处理,除了在硬件上尽量保证 I/Q 两路信号的幅度一直和相位平衡外,通常会采用算法进行校准,TI(德州仪器)的盲校算法可以校准到近 20dB 的改善 (此处不详细描述具体的算法过程)。

图九  I/Q 盲校结果

4. 偶次谐波(even harmonic)

    传统的超外差架构对只是对奇次谐波敏感,而零中频接收机则对偶次谐波非常敏感,简单举例,传统的高中频方案,设主信号中频为 100MHz,两个干扰信号 f1=110MHz,f2=120MH 在,三次谐波2f1-f2=100MHz, 2f2-f1=130MHz,他们离主信号都很近,而偶次谐波 f1-f2,f1+f2 等都离主信号很远,从而能够非常容易滤除,所以对零中频架构而言,偶次谐波影响就非常严重,通常以 IIP2 来定义偶此谐波,相比奇次谐波,偶次谐波的功率更大,而且不像奇次谐波,,可以通过频率规划来规避它,而偶次谐波可以产生于任何高功率的调制干扰信号,没有办法通过频率规划来避免。如图十示。

    怎样抑制偶次谐波呢?简单的方法就是采用差分 LNA 和混频器,但有两个问题需要注意,首先,天线和双工器都是单端的,所以需要单端到差分的转换,比如加变压器,由于通常其会有几个 dB损耗,会引入几个 dB 的系统噪声,其次,差分的 LNA 需要更高的功耗。

2.3 TI 零中频方案实现

    TI 发布的零中频接收机 TRF3711,集成了宽带的解调器,中频 PGA,可调带宽滤波器,自适应的直流校准模块,以及 ADC 驱动放大器,配合 TI 的盲校算法,外接 LNA 模块,就可以实现在基站上的应用 (除了 MC-GSM外的应用)。

    图十二,十三,是基于 20MHz OFDM 信号的实测结果,显示 TRF3711 完全能够满足宽带信号的基站应用。

3、总结
   
    零中频接收机天然具有易集成,低功耗,低成本等特点,但是由于其自身的技术特点,零中频接收机还没有在基站系统中广泛的应用,本文详细分析了零中频接收机的技术难点,以及相应的解决办法,结合 TI 零中频接收机方案 TRF3711 的测试结果,证明了零中频接收机在宽带系统中依然是可是实现的

 


 

关键字:零中频接收机  德州仪器 引用地址:德州仪器——零中频接收机设计

上一篇:加速LTE-A/5G设计 射频LNA/PA需求爆发
下一篇:NOD推出“Nordic Developer Zone”在线技术论坛

推荐阅读最新更新时间:2024-05-07 17:06

TI为海康威视提供300万视频解码器芯片
2006 年 8 月 8 日,北京讯 日前,德州仪器 (TI) 宣布已向中国视频监控产品的领先供应商海康威视数字技术有限公司 (简称海康威视)提供了三百万TVP5150AM1 超低功耗视频解码器芯片,从而显示了 TI 致力于推动中国数字视频产业发展的决心。海康威视在其高性能视频压缩卡、视频硬盘录像机以及视频服务器等产品中均采用了优化的 TVP5150AM1 架构作为其数字视频解码器,并以其低功耗和小尺寸显示出了突出的优势。 作为中国数字视频行业的创新公司,海康威视不仅显著推动了中国视频监控产业的蓬勃发展,而且多年来一直保持着市场第一的地位。在国际市场的开拓方面,海康威视也取得了令人瞩目的进展。借助
[焦点新闻]
德州仪器携手联合信源推出业界首款基于达芬奇技术支持AVS的IPTV机顶盒单芯片解决方案
TI创新型达芬奇技术加速中国IPTV产业的发展 (北京讯 2007年5月 21日) 日前,德州仪器(TI)与联合信源数字音视频技术(北京)有限公司宣布推出业界首款同时支持AVS和H.264双解码的IPTV机顶盒(STB)单芯片解决方案—HM2006。该方案基于TI创新的达芬奇平台,适用于支持国内数字电视标准AVS的家庭音、视频娱乐应用。作为一款低成本且易于实施的解决方案,它的推出必将进一步推动 IPTV 业务在中国范围内的广泛部署。(更多详情,敬请参阅 www.ti.com.cn ) 据分析机构In-Stat的报告数据,到2010年,中国IPTV用户将达到630万,年用户收入将骤增至8.88亿美元。AVS作为中国本土的数字电
[新品]
德州仪器在铜线键合技术产品出货量逾220亿件
TI把铜线产品扩展到汽车和工业等高可靠性应用中。 2014年10月17日,北京讯--- 日前,德州仪器(TI)宣布其内部组装点的铜线键合技术产品出货量已超过220亿件,目前正在为汽车和工业等高可靠性应用进行批量生产。TI现有的模拟和CMOS硅芯片技术节点大多数已用铜线标准来限定,且所有新技术和封装都在用铜线键合法来开发。铜线能提供与金线同等或更佳的可制造性,同时还具有可靠的质量并可节约成本。此外,铜线还能提供比金线高40%的导电性,从而可以用TI的多种模拟和嵌入式处理部件提升用户的整体产品性能。 “TI已率先开发出铜线键合法,该产品可适用于广泛的产品和技术中,并可在多家工厂进行大批量生产。”国际技术调研公司(Tec
[汽车电子]
德州仪器高性能模拟产品系列介绍集锦(四)
BQ24721C - 具有 SMBus 与系统电源选择器、出色软启动的智能电池充电器 https://news.eeworld.com.cn/n/20070202/8147.shtml bq24721 是一款适用于便携式应用的高效率、高集成度同步电池组充电器。该器件实现了高性能模拟前端,能够通过类似 SBS 的简便 SMBus 接口连接至系统电源管理微控制器。 BQ29414 - BQ29415 - 针对 2、3 或 4 节锂离子电池的电压保护 https://news.eeworld.com.cn/n/20070202/8148.shtml bq2941x 是一种用于 2、3 或 4 节锂离子电池组的二级过压保护
[新品]
基于TI_BLE协议栈_ZStack协议栈解析
基于STM32的虚拟多线程,可以很好的用于裸机程序中,用于模拟小型操作系统的多线程概念。本实例参考TI_BLE协议栈_ZStack协议栈。 #include “Hal_Led/Hal_Led.h” #include “Hal_delay/delay.h” #include “Hal_Key/Hal_Key.h” #include “ringbuffer.h” #define APP_LED2_BLINK_EVENT 0x0001 #define HAL_LED1_BLINK_EVENT 0x0001 #define TASK_NO_TASK_RUNNING 0xFF unsigned short Hal_ProcessEve
[单片机]
基于<font color='red'>TI</font>_BLE协议栈_ZStack协议栈解析
TI 2.7W 恒定输出功率D类放大器整体效率达85%
支持宽泛电压范围的小型集成升压转换器简化了设计工作 2007 年 9 月 10 日,北京讯 日前,德州仪器 (TI) 宣布推出一款集成升压转换器的单片无滤波器 D 类音频功率放大器 —— TPA2013D1,该器件能为各种便携式应用提供恒定输出功率,如个人导航设备、PDA、移动电话、便携式媒体播放器以及手持式游戏机等。由于结合了 2.7W 的 D 类放大器与集成式升压转换器,整体效率达到 85%,用户播放音乐或打电话时的热损耗很小,从而有助于延长电池使用寿命。(更多详情,敬请访问: http://focus.ti.com.cn/cn/docs/prod/folders/print/tpa2013d1.html 。) TPA2
[新品]
氮化镓“钱”景可期 TI芯片样本抢先推出
看好氮化镓(GaN)成长商机,德州仪器(TI)积极布局,于近期推出一款功率可达600瓦的氮化镓(GaN)场效应电晶体(FET)功率级工程样本--LMG3410。与基于矽材料FET的解决方案相比,此一产品与该公司的类比和数位电力转换控制器相结合,能让设计人员开发出尺寸更小、效率及效能更高的设计,以满足隔离式高压工业、电信、企业级运算和再生能源的应用。 德州仪器Broad Market Power副总裁暨总经理Hagop Kozanian表示,伺服器/通讯之交流-直流(AC-DC)供应及机架式直流电源分配(Racl-mount DC Power Distribution)两大应用市场,将是驱使GaN FET成长的关键因素。其原因
[半导体设计/制造]
【维科杯】德州仪器参评“维科杯·OFweek 2023中国机器人行业年度核心零部件创新产品奖”
维科杯· OFweek 2023中国 机器人 行业年度评选(简称OFweek Robot Awards 2023),是由中国高科技行业门户OFweek维科网及旗下权威的机器人专业媒体-OFweek维科网·机器人共同举办。该评选是中国机器人行业内的一大品牌盛会,亦是高科技行业具有专业性、影响力的评选之一。 此次活动旨在为机器人行业的产品、技术和企业搭建品牌传播展示平台,并借助OFweek平台资源及影响力,向行业用户和市场推介创新产品与方案,鼓励更多企业投入技术创新;同时为行业输送更多创新产品、前沿技术,一同畅想机器人行业的未来。 维科杯· OFweek 2023中国机器人行业年度评选“OFweek Robot Awards 2023
[机器人]
小广播
最新网络通信文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved