低噪声放大器的两种设计方法

发布者:NanoScribe最新更新时间:2011-05-25 来源: elecfans关键字:低噪声放大器  噪声系数  增益  VSWR 手机看文章 扫描二维码
随时随地手机看文章
   

    低噪声放大器( LN A)是射频收发机的一个重要组成部分, 它能有效提高接收机的接收灵敏度,进而提高收发机的传输距离。因此低噪声放大器的设计是否良好, 关系到整个通信系统的通信质量。本文以晶体管ATF54143 为例,说明两种不同低噪声放大器的设计方法, 其频率范围为2~ 2. 2 GHz;晶体管工作电压为3 V;工作电流为40 mA; 输入输出阻抗为50Ω。
1 定性分析

  1. 1 晶体管的建模

  通过网络可以查阅晶体管生产厂商的相关资料, 可以下载厂商提供的该款晶体管模型, 也可以根据实际需要下载该管的S2P 文件。本例采用直接将该管的S2P文件导入到软件中, 利用S 参数为模型设计电路。如果是第一次导入, 则可以利用模块SParams 进行S 参数仿真, 观察得到的S 参数与S2P 文件提供的数据是否相同, 同时, 测量晶体管的输入阻抗与对应的最小噪声系数,以及判断晶体管的稳定性等, 为下一步骤做好准备。

  1. 2 晶体管的稳定性

  对电路完成S 参数仿真后, 可以得到输入/ 输出端的mu 在频率2~ 2. 2 GHz 之间均小于1, 根据射频相关理论,晶体管是不稳定的。通过在输出端并联一个10 Ω和5 pF 的电容, m2 和m3 的值均大于1, 如图1,图2 所示。晶体管实现了在带宽内条件稳定, 并且测得在2. 1 GHz 时的输入阻抗为16. 827- j16. 041。同时发现,由于在输出端加入了电阻, 使得Fmin由0. 48 增大到0. 573,Topt 为0. 329 ∠125. 99°, Zopt = ( 30. 007 +j17. 754) Ω 。其中, Topt 是最佳信源反射系数。

 

图1 利用模块SParams 进行仿真的电路原理图

图2 输入/ 输出mu 与频率的关系

  1. 3 制定方案

  如图3 所示, 将可用增益圆族与噪声系数圆族画在同一个Ts 平面上。通过分析可知, 如果可用增益圆通过最佳噪声系数所在点的位置,并根据该点来进行输入端电路匹配的话, 此时对于LNA 而言, 噪声系数是最小的,但是其增益并没有达到最佳放大。因此它是通过牺牲可用增益来换取的 。在这种情况下, 该晶体管增益可以达到14 dB 左右, Fmin 大约为0. 48, 如图3 所示。

  另一种方案是在可用增益和噪声系数之间取得平衡, 以尽可能用小噪声匹配为目标,采用在兼顾增益前提下的设计方案。在这种情况下该晶体管增益大约为15 dB左右, Fmin大约为0. 7( 见图3)。这个就是本文中提到的第2 种方案。

图3 同一个Ts 平面上的可用增益圆族与噪声系数圆族。

  2 以最佳噪声系数为设计目标方案的仿真

  2. 1 输入匹配电路设计

  对于低噪声放大器, 为了获得最小的噪声系数, Ts有个最佳Topt 系数值, 此时LNA 达到最小噪声系数,即达到最佳噪声匹配状态。当匹配状态偏离最佳位置时,LNA 的噪声系数将增大。前面定性分析中已经获得Topt= 0. 329∠125. 99°, 以及对应的Zopt = 30. 007 +j17. 754 Ω 。下面可以利用ADS 的Passive CIRcuit / MicorST rip Co nt ro lWindow 这个工具, 自动生成输入端口的匹配电路。

  在原理图中添加一个DA_SSMatch1 的智能模块,然后修改其中的设置: F = 2. 1 GH z, Zin= 50Ω。值得注意的是, 利用该工具生成匹配电路时, Zload 是Zopt 的共轭。设置完毕后, 再添加一个MSub 的控件,该控件主要用于描述基板的基本信息, 修改其中的设置为H =0. 8 mm, Er = 4. 3,Mur = 1, CONd= 5. 88 × 107 ,H u =1. 0e+ 33 mm, T = 0. 03 mil。设置完后, 即可进行自动匹配电路的生成,结果电路如图4 所示。

 

图4 输入端口的匹配电路

  将输入匹配电路添加到图1 后再进行S 参数的仿真。可以看到, 最佳噪声系数Topt 的位置由于输入匹配电路的加入而成功匹配到50Ω的位置。

  2. 2 输出端匹配电路设计

  根据最大功率增益原则进行输出端匹配电路的设计( 考虑到输出稳定电路的存在, 对输出阻抗的影响,在进行输出阻抗测量时要把稳定电路计算在内) , 即将输出阻抗( Zout= 8. 055- j8. 980, 如图5 所示)使用上述的方法匹配到50 Ω 。得到的输出端匹配电路如图6所示。

图5 输出阻抗匹配

图6 输出端匹配电路

[page]

  2. 3 仿真结果

  观察最后的仿真结果可以看到, 增益为14. 4 dB;噪声系数为0. 586, 这与稳定后的晶体管最佳噪声系数0. 573非常接近, 且增益平坦度低, 稳定性能优异。具体性能指标如图7 所示。

图7 原理图仿真数据

  3 以噪声系数为主兼顾增益为设计目标方案的仿真

  3. 1 输入匹配电路设计

  如果选择基板材料为环氧玻璃FR4 基板, 介电常数为4. 3, 厚度为0. 8 mm, 则2. 1 GHz 时的晶体管输入阻抗为16. 827- j16. 041。采用上述匹配电路生成方法, 输入匹配电路采用A DS 设计向导中的单支节模块来设计。可以很快得到图8 中的匹配电路。如图9 所示, 图中m6 = 50( 0. 927+ j0. 001)。与50Ω的非常接近, 所以得出的输入端匹配情况比较合理。

图8 输入匹配电路

图9 加入输入匹配电路后的S 11 的smit h 原图

  3. 2 输出匹配电路设计

  在完成输入匹配电路设计之后, 可以对输出匹配电路进行设计。在此充分发挥CAD 软件的优势, 借助优化的方法来实现。基本过程如下:

  将输入匹配电路的结果添加到图10 中,并在晶体管输出端添加如图所示的微带。调出优化控件, 并将优化的目标设置为dB ( S ) 11))为- 20, dB (S ( 22)) 为- 15。

  在优化开始时, 先将T L1, T L2, TL3 宽度设置为61. 394 mil, 这是为了保障在考虑到板材、板材厚度等因素下微带线的特性阻抗为50 Ω。预设T L1, T L2,TL3 的长度, 优化一次后,刷新结果, 观察各种图表的指标是否更好, 数值是否达到设置的最大值, 如果达到最大值, 再次改变设置值重新优化。反复多次后,将会达到再次改变这几个数值, 若改变后对于各种指标作用不大, 可以尝试改变电阻和输入匹配的数值再进行优化。

  通过多次调试发现, R1 设为15Ω, 以及加上TL7后,增益和噪声系数以及输入输出驻波比效果更好。仿真电路原理图及优化控件和目标控件如图10 所示。

图10 仿真电路原理图及优化控件和目标控件

  3. 3 仿真结果

  观察最后的仿真结果可以看到, 增益为15. 816 dB;噪声系数为0. 708,该指标均比定性分析时的都要好,其他性能指标如图11 所示。

图11 原理图仿真数据

  4 结 语

  通过对晶体管进行定性分析, 可以根据实际需要选择低噪声前置放大器的设计方案, 第一种方案的最佳噪声系数是以牺牲增益而得到的;第二种方案是以提高噪声系数为代价, 降低驻波比VSWR 的值得到的。2 种方法利用计算机辅助设计工具均可以快速实现,各有各自的存在价值, 这在很多场合都得到了应用。

关键字:低噪声放大器  噪声系数  增益  VSWR 引用地址:低噪声放大器的两种设计方法

上一篇:硬件设计中电容电感磁珠总结
下一篇:WiMAX射频系统设计方案

推荐阅读最新更新时间:2024-05-03 11:32

Maxim推出具有多种增益状态的LNA
MAX2666/MAX2668具有三种可编程增益状态,允许设计人员动态调节线性度和灵敏度,延长无线信号传输范围。 Maxim Integrated Products (NASDAQ:MXIM)推出用于HSPA和LTE等高数据速率无线协议的低噪声放大器(LNA) MAX2666/MAX2668。每款LNA具有三种可编程增益状态,允许用户动态调节线性度和灵敏度,优化不同输入信号强度下的系统性能。当邻道信号的干扰很高时(这在移动设备中十分常见),可以调节增益以保持最佳的阻塞性能。MAX2666/MAX2668能够在各种输入信号条件下保证优异的系统性能,非常适合用于智能手机和平板电脑等基于HSPA/LTE的无线系统。 Max
[网络通信]
音频控制芯片PGA2311的音频增益自动控制
  最早的增益控制是模拟电路检测控制,但模拟电路设计相对繁琐,且难以实现较宽范围的增益控制,因此随着数字信号处理器件(DSP)的发展,采用DSP进行增益控制成为主流。起初数字器件处理的一般方法是大的信号减小增益,小的信号不处理。现在也有对小信号进行放大的方法,但由于担心在没有信号输入的情况下增益调整太大,会使背景噪声也加大,因此增益调整范围不大,不能达到理想的控制效果。另外,基本都是对输入信号进行检测,即前馈控制,对输出信号不进行检测,这样在输人时若增益较大,输出会被限幅,影响收听效果。且DSP方案成本相对较高。本方案采用成本低的单片机为处理核心,通过简单的增益控制算法完成增益自动控制。   1 系统硬件设计   如图1所示,
[单片机]
音频控制芯片PGA2311的音频<font color='red'>增益</font>自动控制
ADI可变增益放大器突破频率性能与集成度限制
Analog Devices, Inc. (NYSE: ADI),全球领先的高性能信号处理解决方案和RF集成电路供应商,最近推出一系列高度集成的RF/IF可变增益放大器 (VGA) ADL5201、ADL5202、ADL5240和ADL5243。这些新产品的集成度均实现较大突破,单器件中最多可集成4个分立RF/IF模块。无线系统制造商借助这种前所未有的集成度,能够大幅降低器件数量和物料成本。除了卓越的集成度,新款 VGA 还具有业界领先的性能、线性度和灵活性,非常适合蜂窝基站、工业/仪器和国防设备等要求严苛的应用。 “这些新型 RF/IF 可变增益放大器进一步体现了 ADI 公司的承诺:为RF和IF应用提供一流的集成度和性能,”
[网络通信]
几种新型的高性能生物电放大器
  概述   生物电信号十分微弱,在检测生物电信号的同时存在强大的干扰,因此,设计高质量的生物电放大器有许多技术困难。   本文介绍了使用ADI公司生产的集成化仪用放大器和运算放大器,设计了几种新的结构形式的高性能生物电前置放大器。 图1 生物电前置放大器设计应用一 图2 生物电前置放大器设计应用二 图3 生物电前置放大器设计应用三   几种新型高性能生物电放大器   设计应用一   该放大电路由四部分构成:仪用放大器A5构成的前级放大器,运放A4构成后级差分放大器,直流补偿放大器A3以及A1、A2构成右腿驱动电路,电路结构如图1所示。这个电路突出的优点是引入了直流补偿电 路,使最初的
[医疗电子]
几种新型的高性能生物电放大器
用D/A转换器实现高精度可编程增益放大器
实际应用中,常常需要一个增益可软件编程的放大器(PGA),用来将不同幅度的模拟输入信号放大到某个特定范围,便于A/D转换器进行采样,或者将给定信号放大一个由软件设定的增益后输出。但可供选用的现成的可编程增益放大器并不多见,需要采用其它方法来实现,通常有两种方法:1)运放+模拟开关+电阻网络;2)运放+数字电位器。其中,前一种方法利用模拟开关切换电阻反馈网络,从而改变放大电路的闭环增益。此种方法所需元器件较多,电路庞大,而且精度受到限制。第二种方案采用固态数字电位器来控制放大电路的增益,线路较为简单。但现有的数字电位器分辨率有限,常见的有32、64抽头,少数可达1024抽头,因而构成的放大器精度有限,无法满足10位甚至12位数
[模拟电子]
噪声系数测量方法原理
噪声系数是表征接收机及其组成部件在有热噪声存在的情况下处理微弱信号的能力的关键参数之一。例如,在测量低噪声放大器(LNA) 时,噪声系数描述的是由于LNA的有源器件在内部产生噪声而导致信号的信噪比下降。安捷伦提供噪声系数测试解决方案已有50年的历史 从噪声计到现代基于频谱、网络和噪声系数分析仪的解决方案。使用这些仪表不但可以既方便又快速地进行噪声系数的测试,而且还可以得到很高的测量精度。噪声系数的精确测量对于产品的研发和制造都非常关键。在研发领域,高测试精度可以保证设计仿真和真实测量之间的可复验性很高,并有助于发现在仿真过程中未予以考虑的噪声来源。在生产和制造领域,更高的测试精度意味着在设定和验证器件的技术指标时可以把指标的余量设定
[测试测量]
<font color='red'>噪声系数</font>测量方法原理
运算放大器增益误差设计
  选择合适的运算放大器 (op amp)时,首先要做的便是确定系统通过该放大器进行传输的信号带宽。一旦您确定下来这一点,您便可以开始寻找正确的放大器。来自高速设计专家的告诫是:您应该避免使用相对您的应用而言速度过快的模拟器件。因此,您要尽量选择一种闭环带宽稍高于信号最大频率的放大器。   它听起来好像是一种较好的产品选择方案,但是这种设计方法将可能会给您的应用板带来灾难性的后果。在实验室中,您可能会发现当您将应用最大频率的输入正弦波信号置入系统时,您放大器的输出信号并未穿过希望的全刻度模拟范围。信号增益远低于预期。您放大器的转换速率等级超出所需。另外,您并没有驱动放大器输出至电源轨中。哪里出错了呢?   不要再反复检查您的电阻
[网络通信]
Qualcomm真实网络模拟实验展示显著的5G用户体验增益
高通今日发布其在过去数月中开展大量5G真实网络模拟实验所获得的多项重要成果。 Qualcomm Technologies的5G网络容量模拟实验可为运行于非独立(NSA)多模4G/5G新空口网络的5G及千兆级LTE终端的预期真实性能与用户体验提供定量洞察,从而展示5G的巨大潜力。随着业界正为在2019年上半年推出首批5G网络和终端做好准备,上述成果还可为在4G LTE上部署5G新空口所获得的显著容量增益提供定量支持。 Qualcomm Technologies, Inc.工程技术高级副总裁Alex Holcman表示:“移动生态系统的众多成员——包括云平台供应商、应用开发商和终端OEM厂商等——都非常有兴趣了解5G新空口移动
[半导体设计/制造]
小广播
最新手机便携文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved