新材料技术被视为“发明之母”和“产业粮食”,就在近日国内高校在《自然》(Nature)杂志上发表了关于非晶态材料的相关研究成果,再次将非晶态材料推向了半导体研究的热点。
非晶态材料是有序度介于晶体和液体之间的一种聚集态材料,非晶态材料不像晶态物质那样具有完善的近程和远程有序,而是不存在长程有序,仅具有近程有序。非晶态材料制备需要解决两个问题:其一是必须形成原子或分子混乱排列的状态,再者必须将非晶态材料热力学上的亚稳态在一定的温度范围内保存下来,使之不向晶态转变。
在非晶态前驱体制备过程中,由于采用多层膜体系会在其不同材料界面上发生扩散和结晶成核两种过程,一旦成核便不易进一步扩散。但如果不控制所制备薄膜的厚度于扩散-结晶临界厚度以下,则无法避免热处理过程中中间化合物的产生,阻碍扩散的完全,这就需要额外的实验探索不同薄膜材料扩散-结晶的临界厚度,以便实验时控制所制备薄膜沉积临界厚度,增加了实验工作量,降低了实验效率。
为了解决上述问题,早在16年宁波国际材料基因工程研究院有限公司就申请了一项名为“一种非晶态材料制备方法”的发明专利(申请号:201610050104.2),申请人为宁波国际材料基因工程研究院有限公司。
该专利提供了一种实验效率高、仅通过简单的材料沉积过程和低温热处理过程即可完成多种材料的均匀混合,进而完成非晶态材料制备的制备方法。
图1 非晶态材料制备方法的流程图
上图1是本专利提出的非晶态材料制备方法的流程图,由于非晶态材料种类繁多,这里我们以铁-硼-铝(Fe-B-Al)非晶态合金材料的制备方法为例进行说明。在Fe-B-Al非晶态合金材料的制备过程中,对于Fe、Al材料,我们通过磁控溅射方法进行薄膜沉积,而对于B材料,我们选择电子束蒸发法进行薄膜沉积。
首先,在真空环境下,调节Fe材料沉积源的沉积功率,同时调节Fe材料沉积源与基片之间的间距,通过磁控溅射方法在基片上进行Fe材料薄膜沉积,保证基片上沉积的该层Fe材料薄膜厚度远小于Fe材料的扩散-结晶临界厚度,最后使得Fe材料薄膜的厚度为1 .5nm。
随之调节B材料沉积源的沉积功率,同时调节B材料沉积源与基片之间的间距,通过电子束蒸发的方法在Fe材料薄膜上进行B材料薄膜沉积,并且保证基片上沉积的该层B材料薄膜厚度远小于B材料的扩散-结晶临界厚度。
在制备Al材料薄膜时,采用和Fe材料薄膜相同的制备方法,只是期望得到的Al材料薄膜的厚度是在1.8nm左右。
最后,依次循环上述操作,直至沉积的Fe-B-Al薄膜总厚度达到要求厚度,从而制成FeB-Al-Fe-B-Al…超晶格结构多层膜样品。在普通水冷装置的控制下,将上述Fe-B-Al-Fe-B-Al…超晶格结构多层膜样品的制备过程放置在室温条件下进行。然后再将所制备的Fe-B-Al-Fe-B-Al…超晶格结构多层膜样品放置在100℃的环境中、大气压下进行3小时的热处理,即可完成Fe-B-Al非晶态样品的制备。
宁波国际材料基因工程研究院有限公司提出的此种制备方法,在较短时间内,较低温度下即可完成非晶态材料制备,大大降低了非晶态材料的制备成本,提高了制备效率。
国际上,美国、日本、德国等国家纷纷投入大量资金支持非晶态材料的研究,推动产业发展。而我国科研工作者也紧跟世界发展前沿,在非晶态领域的多个方向都取得了突破性进展,科研成果颇丰。希望在不久的将来,会有更多的非晶态材料应用在实际生活中,也希望我国半导体新材料的研究再创辉煌。
上一篇:瑞声科技英国设立MEMS麦克风全球研发中心
下一篇:分析师:iPhone SE一年售3000万部,成为仅次于iPhone 11
- 消息称苹果、三星超薄高密度电池均开发失败,iPhone 17 Air、Galaxy S25 Slim手机“变厚”
- 美光亮相2024年进博会,持续深耕中国市场,引领可持续发展
- Qorvo:创新技术引领下一代移动产业
- BOE独供努比亚和红魔旗舰新品 全新一代屏下显示技术引领行业迈入真全面屏时代
- OPPO与香港理工大学续约合作 升级创新研究中心,拓展AI影像新边界
- 古尔曼:Vision Pro 将升级芯片,苹果还考虑推出与 iPhone 连接的眼镜
- 汇顶助力,一加13新十年首款旗舰全方位实现“样样超Pro”
- 汇顶科技助力iQOO 13打造电竞性能旗舰新体验
- BOE(京东方)全新一代发光器件赋能iQOO 13 全面引领柔性显示行业性能新高度
- EVAL-ADuC7028QS、ADuC7028 评估板,用于评估微转换器 ADuC7028 开发系统
- 【训练营】基于RGB灯的情景智能Wifi模组933312A
- 使用 OP297 的 OP297GSZ-REEL 简单桥式条件放大器的典型应用
- 使用 ON Semiconductor 的 LM78M05C 的参考设计
- MASTERGAN5 高功率密度半桥高压驱动器演示板,带有两个 650V 增强型 GaN HEMT
- LT3066IMSE-3.3 电流监视器的典型应用电路
- 使用 Analog Devices 的 LTC7851EUHH-1 的参考设计
- 用于移动应用的多输出、序列可选电源控制器的典型应用
- LT3091HDE 产生极低输出电压的典型应用
- LTC1871,高功率、双输出 SLIC 电源