基于SOPC 的1553B 总线接口逻辑设计

发布者:SerendipityGlow最新更新时间:2010-06-20 来源: 微计算机信息 关键字:1553B总线  SOPC  硬核处理器  现场可编程门阵列 手机看文章 扫描二维码
随时随地手机看文章

1 引言

  数据总线是飞机航电系统中首先运用的数字电子设备之一,MIL-STD-1553B 就是其典型代表,它利用一条屏蔽的双绞线进行带有时钟信息的数据传输。1553B 具有高可靠性的特点,它已经成为我国航空航天领域广泛采用的军用总线标准。由于1553B 总线协议控制器基本依赖于进口的专用芯片,价格昂贵,还受到限制,并且这些芯片需要很多外围的硬件电路配合工作,如果完成整个总线接口板的设计,还需要单独的MCU,集成度不高,这样就在某种程度上限制了设计能力。随着嵌入式技术的发展,可编程片上系统设计(System on aProgrammable Chip,SOPC)技术已经在很多领域得到实际应用。本文采用SOPC 技术,以Xilinx 公司的Virtex-II Pro FPGA 为核心,实现1553B 总线传输协议的接口逻辑设计。

2 1553B 数据总线传输协议简介

  现在广泛采用的 1553B 标准是根据1973 年军标1553 原版基础上发展而来的。1553B是一种集中控制式、飞机内部时分指令/响应型多路串行数据总线标准,具有高可靠性和灵活性,已经成为现代航空机载系统设备互联的关键技术,广泛应用于飞机、舰船等武器平台上。1553B 数据总线的传输速率为1Mbps,协议规定3 种字:命令字、数据字和状态字。字的长度为20 个bit,且由3 部分组成:同步头(3bit),消息块(16bit)和奇偶位(1bit)。信息量最大长度为32 个字。总线系统由一个总线控制器(BC)与不多于31 个的远程终端(RT)组成,有时系统中还可以加入总线.(MT),由于终端类型的不同,可辨别出命令字和状态字,命令字由BC 发出,而状态字则由RT 发出。总线上传输的信息格式主要有BC 到RT,RT到BC,RT 到RT,广播方式和系统控制方式。

3 系统结构及功能

  系统采用 Xilinx 公司的Virtex-II Pro XC2VP30 FPGA 为核心,其内部带有2 个PowerPC405 处理器核。总线接口协议实现是基于Xilinx Virtex-II Pro 开发系统平台的,Virtex-II Pro开发平台是整个系统的核心,可以快速的搭建1553B 总线实现平台。系统的硬件平台主要由Virtex-II Pro 开发板、总线转换器、总线终端设备和PC 机构成,系统结构如图1 所示。


  在系统的开发中,为了提高开发效率,同时系统主要验证的就是1553B 总线协议模块,因此可以充分利用Xilinx 公司的Virtex-II Pro 开发板。开发板上具有丰富的资源,主要包括:XC2VP30 芯片、SDRAM(可以扩展到2GB)、高速SelectMAP FPGA 配置PROM、RS232 串口、嵌入平台的USB 配置端口、高速系统扩展接口(与FPGA 的I/O 管脚相连)并可选择差分或单端模式、PS2 接口、AC97 音频接口、板上10/100M 以太网设备等等。这些丰富的板上资源为1553B 总线协议逻辑的开发提供了支持。

  1553B 总线协议开发主要在FPGA 芯片中开发,因此FPGA 本身性能的好坏将影响系统的开发。XC2VP30 内部具有两个PowerPC 405 处理器核、13969 个Slices、分布式RAM 为428Kb、136 个乘法器单元、块RAM 为2448Kb、8 个DCM、8 个多吉比特收发器。由此可见,系统选用的FPGA 完全可以满足1553B 总线逻辑开发的需求。基于Xilinx 公司的Virtex-IIPro 开发板搭建起来的1553B 总线开发平台共分为4 个部分。其中各部分的功能说明如下:Virtex-II Pro 开发板:主要完成与PC 机通信功能,接收或向总线终端设备发送数据并将其转换成1553B 总线协议格式。

  PC 机:系统通过PC 机对整个系统运行进行控制,如开始、运行、结束等命令都是通过PC 机由串口发送给开发板。

  总线终端设备:采用单片机作为总线终端设备的核心,它与 FPGA 采用8 位并行数据总线进行数据传递。由总线终端设备向开发板发送数据,通过1553B 总线协议模块转换成协议格式,同时1553B 总线协议模块也可以接收来自总线的数据,并将其转换成总线终端设备可以接收的数据格式,总线终端设备通过判断发送数据与接收数据,可以确定

  1553B 总线协议转换模块的有效性。

  总线转换器:由于 1553B 总线上传输的是双极性的差分信号,因此,开发板在收发数据时首先要进行电平转换以及相应的调制解调,总线转换器就是完成这部分功能的。

4 1553B 总线接口逻辑的SOPC 设计

  SOPC 的开发过程与传统的嵌入式系统设计不同,可以分为硬件开发和软件开发两个流程。Xilinx 公司的嵌入式开发工具EDK(Embeded Development Kit)SOPC 开发套件,可以进行Power PC 硬核嵌入式微处理器的开发工作,使用灵活方便,带有丰富的IP 资源,是目前性能比较优异的嵌入式微处理器开发工具,系统设计中使用的为EDK8.2 版本。应用EDK开发SOPC 系统过程中可以与ISE(Integrated Software Environment)软件配合使用,ISE 是Xilinx 公司FPGA/CPLD 的集成开发环境,该软件环境集成了FPGA 的整个开发过程所用到的工具。在本文1553B 总线接口逻辑的设计过程中,对于1553B 的编码、解码等核心模块,就是在ISE 环境下利用Verilog HDL 编写并调试通过,然后通过EDK 嵌入到系统当中的。

  4.1 编码/解码模块

  曼彻斯*编码/解码是1553B 总线接口重要的组成部分,曼彻斯*编解码模块设计的好坏直接影响总线接口的性能。系统编码模块完成的是曼彻斯*的编码及解码,并检测错误。它能够接收具有有效同步字头的曼彻斯*,并进行译码,以及识别其类型和串并转换、奇偶校验等;编码模块能将处理器输出的并行二进制数据进行曼彻斯*编码,再加上同步字头及奇偶位,从而满足符合1553B 标准的字进行输出。

  曼彻斯*是一种广泛应用于航空电子综合系统中的总线数据传输的双极性码。它在每个码位中点存在一个跳变,1 信号是一个由1 到0 的负跳沿,而0 信号是由0 到1 的正跳沿。在MIL-STD-1553B 协议中其数据格式如图2 所示。

[page]

  在系统的编码/解码模块设计中采用同步设计的方法,这样,所有的触发器都由一个公共时钟信号来同步。因此,可以很好的解决毛刺和一些竞争与冒险。

  编码模块主要分为三个部分,分别为检测编码周期是否开始并产生同步字头、串并转换并产生奇偶校验位、对数据和奇偶校验位进行编码。下面给出了部分编码模块的源代码:

  always @(posedge enc_clk or negedge rst_n)//检测编码周期开始,根据字型确定同步头

  begin

  if (!rst_n)

  sync_bits <= 6'b000_000 ;

  else if (tx_csw)

  sync_bits <= 6'b111_000 ;//当写入命令字,同步头为111000

  else if (tx_dw)

  sync_bits <= 6'b000_111 ;//当写入数据字,同步头为000111

  else

  sync_bits <= sync_bits ;

  end

  解码模块也可以分为三个部分,分别为同步字头检测、数据解码、串并转换与奇偶校验。

  这个过程与编码模块是类似的。

  4.2 消息处理模块

  消息处理模块主要是接收来自 PC 机的命令,并且将运行结果上传到PC 机。为了能够快速完成系统的开发,采用EDK 自带的串口控制器IP Core。由于在Virtex-II Pro 开发板上面已经设计了与PC 机相连的RS232 串口,并且配有标准的DB-9 接口,因此只需要通过IPCore 16450-UART 控制器接收和发送数据即可实现系统与PC 机的消息处理功能。

  4.3 PC 机和终端机程序设计

  系统整个运行过程是,通过PC 机上的应用程序控制FPGA 是否开始工作,如果FPGA开始工作,则接收终端设备单片机发送来的并行数据,并根据用户逻辑对数据进行解析,并将数据送往编码模块,编码后的数据经过总线转换器送到1553B 总线上,通过测试仪器接收分析。同时,FPGA 也可以接收来自总线上的数据,在解码模块的作用下,完成同步字头检测、数据解码、串并转换以及奇偶校验等处理,然后根据用户逻辑对数据进行封装并送给终端设备,终端设备接收到数据进行存储,并连同原始发送数据一起通过FPGA 上传到PC机,以便对数据的正确性进行判断与验证。对于PC 机程序在VC6.0 环境下采用C++语言开发;终端设备单片机程序在Keil 编程环境,采用c51 语言开发。由于PC 机和单片机程序只是为了验证基于SOPC 开发的1553B 接口逻辑,不是本文论述重点,这里不过多赘述。

5 测试结果及结论

  本文采用基于 SOPC 的设计方法,完成了MIL-STD-1553B .接口逻辑的开发,并且通过仪器对系统进行了测试。图3 是通过Tektronix 公司的TDS3032B 型示波器测得的系统输出的数据波形。测试结果表明,系统能够正确的接收和发送符合1553B 总线接口协议的数据,工作稳定可靠。


  本文作者创新点:将 SOPC 技术应用于1553B 总线接口逻辑的开发中,使系统设计简单,配置更灵活,易于扩展,从而摆脱了1553B 总线控制器依赖于国外进口芯片的束缚,具有良好的军事和经济效益。初步预测项目经济效益约为300 万元。

关键字:1553B总线  SOPC  硬核处理器  现场可编程门阵列 引用地址:基于SOPC 的1553B 总线接口逻辑设计

上一篇:连锁酒店规模发展 安防网络化大潮已来
下一篇:北京年内将推电子护照 芯片供应方并未知晓

推荐阅读最新更新时间:2024-03-16 10:53

“一刀切”时代结束 芯片设计有“芯”思路
  半导体制程工艺这一话题,可以说是久说不腻,世界领先的半导体厂商在这方面的争夺也是前赴后继,这种你争我夺,你来创新我来颠覆的局面对于CPU,  FPGA 和ASIC 芯片 来说,就犹如“红牛”一般,是这些 芯片 历久弥新,狂奔向前的主要驱动力。下面就随嵌入式小编一起来了解一下相关内容吧。   然而世事无绝对,现在很多应用的发展程度和性能与工艺制程的关联度越来越低,已经很难称之为主要驱动力了。   应用对于 芯片 制程的需求化程度见证了硬件的发展历程,背后折射出的是硬件从通用硬件采用定制化软件,到以较少的硬件能耗加之专门化的差异化硬件实现的特有的功能和极致性能,这一曲折而又繁复的发展过程。   在过去的十年里,这十年几乎等同于智
[嵌入式]
Altera通过与Mentor合作,推出业界领先的SoC FPGA
支持Altera具有四核ARM Cortex-A53处理器的下一代Stratix 10 SoC的早期软件开发 2015年2月25号,北京 Altera公司(Nasdaq: ALTR)今天宣布,与Mentor Graphics合作为嵌入式软件开发人员提供同类最佳的Vista 虚拟平台,它支持Altera全系列SoC FPGA,包括具有64位四核ARM Cortex-A53处理器的第三代14 nm Stratix 10 SoC。这些先进的SoC虚拟平台加速了整个产品生命周期中嵌入式软件的开发,显著缩短了产品面市时间,同时降低了成本。 Mentor Graphics Vista SoC虚拟平台是经过预先开发的全功能ARM处
[半导体设计/制造]
M4K块移位寄存器数据读进方式的逻辑分析仪设计
    逻辑分析仪主要采用高速采样、灵活触发和大容量存储等技术来实现对被测数据的捕获、存储和定位分析。传统数据存储电路将采样回来的数据先经过锁存器锁存,一旦触发标志有效,再根据采样时钟的频率把锁存器数据输出到外接的SRAM。其缺点是速度慢、存储占用空间大,不适用于大量数据缓存的需求。本文以三星的SDR SDRAM(K4S64632)作为存储器,通过FPGA内部的M4K块作为移位寄存器不断的进行读进数据的方式,在不中断程序运行的情况下实现有效数据不间断的读进,设置3种采样模式,结果表明该设计提高了数据的分析范围和质量。 1 逻辑分析仪总体方案     逻辑分析仪包括:数据采样、数据存储、显示控制3大部分。由于Cyclone芯片EP1C
[嵌入式]
WTB网络HDLC在FPGA中的实现
1 引言 TCN(Train Communication Network)总体结构是由WTB(绞线式列车总线)和MVB(多功能车辆总线)组成,符合IEC61375-1标准。本文主要围绕WTB链路控制的帧格式进行研究。鉴于IEC61375-1标准中规定的WTB帧数据格式与IS03309中定义的HDLC(High Level Data Link Control)格式一致,基带Manchester-Biphase-L技术编解码器现则围绕HDLC展开。 随着深亚微米工艺技术的发展,FPGA(FieldProgrammable Gate Array)的规模越来越大,其单片逻辑门数已超过上百万门。同时还具有开发周期短、成本低、可实时在线检
[应用]
两大两小厂商或易主或易“容” FPGA将何去何从?
如果说“变”是历史的主调,那对于FPGA业者来说,变化显然来得太快了。 Intel(英特尔)以167亿美元现金收购Altera成为旗下PSG事业部,成其物联网云管端大战略的重要一环;另一巨头赛灵思被高通收购的消息不绝于耳;继Lattice(莱迪思)以约6亿美元囊括Silicon Image之后,去年11月有中资背景的基金Canyon Bridge以13亿美元收购莱迪思;而业界亦在盛传Skyworks要将Microsemi收入囊中,以扩展业务领域。“两大两小”的FPGA厂商或易主或易“容”,背后的深意是什么?置身潮流之中的FPGA将何去何从? 加速向数据中心和AI渗透 我们看到,自收购之后,Intel在一年时间内在不断加强F
[嵌入式]
ASIC、FPGA 基本概念
*什么是ASIC? ASIC(Application Specific Intergrated Circuits)即专用集成电路,是指应特定用户要求和特定电子系统的需要而设计、制造的集成电路。ASIC的特点是面向特定用户的需求,品种多、批量少, 要求设计和生产周期短,它作为集成电路技术与特定用户的整机或系统技术紧密结合的产物,与通用集成电路相比具有体积更小、重量更轻、功耗更低、可靠性提高、性能提高、保密性增强、成本降低等优点。 *关于FPGA FPGA(Field Programmable Gate Array)即现场可编程门阵列,它是在PAL、GAL、EPLD等可编程器件的基础上进一步发展的产物。它是作为专
[新品]
锁定三大应用 SoC FPGA扩张工控版图
SoC FPGA将大举进军机器视觉、马达控制和工业乙太网路等工厂自动化应用。FPGA开发商正纷纷祭出SoC设计策略,透过整合多核心CPU、数位讯号处理器和微控制器等运算核心,强化处理效率并增进高阶演算法支援能力,进而满足工厂自动化设备对即时且高精准度控制、多元通讯协定支援和大量资料同步的开发需求。 Altera工业市场亚太区首席经理江允贵认为,处理器的功能安全性和长期供货能力,亦是工业自动化系统开发商评选元件的重要考量。 Altera工业市场亚太区首席经理江允贵表示,随着亚洲人力雇用成本攀升,加上北美大力推行制造业回流政策,全球主要3C产品制造工厂以机器取代人工的需求已日益殷切,激励欧美、日本和台湾工业设备大厂加紧
[工业控制]
Actel推出新款低成本CorePWM组件
Actel宣布推出低成本CorePWM组件,新产品是针对数模转换所设计的PWM IP,可搭配该公司的Fusion可编程系统芯片(PSC)等FPGA产品,实现单芯片死循环控制系统的设计,取代现有的分立PWM组件、ASSP或ASIC;适用于各种嵌入式混合信号应用,包括工业、医疗设备、军用/航天、通信、消费性电子和汽车领域等。 Actel表示,CorePWM IP占用的逻辑门数很少,仅是3万个逻辑门ProASIC3的11%,或9万个逻辑门Fusion器件的4%。该IP具有一个基于缓存器的接口,可与具微控制器或不具微控制器的内核,如Actel的Core8051或CoreMP7一起使用。该组件具有8个8位PWM输出信道和一个8位预标器(p
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新安防电子文章

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 视频监控 智能卡 防盗报警 智能管理 处理器 传感器 其他技术 综合资讯 安防论坛

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved