基于DSP的机器人视觉伺服系统研究与设计

发布者:火星最新更新时间:2009-05-12 来源: 微计算机信息关键字:视觉伺服  图像处理  TMS320C6201  实时性  图像雅克比矩阵 手机看文章 扫描二维码
随时随地手机看文章

      1. 引言

  机器人视觉伺服系统是机器人领域中的重要研究方向,起源于80年代初,随着计算机技术、图像处理技术、控制理论的发展,取得了很大进步,有一些系统已投入使用。视觉伺服跟通常所说的机器视觉有所不同,视觉伺服是利用机器视觉的原理,进行图像的自动获取分析,从直接得到的图像处理反馈信息中,快速进行图像处理,在尽量短的时间内给出反馈信号,构成机器人的位置闭环控制,实现对机器人的控制。正是由于系统以实现某种控制为目的,所以视觉伺服系统中的图像处理过程必须快速准确。本文主要针对机器人视觉伺服系统要求快速准确的特点,为满足项目研究的需要,讨论研究了基于DSP的图像反馈机器人视觉伺服技术。

  2 . 系统工作原理及硬件构成

  基于图像的视觉伺服直接计算图像误差,产生控制信号,并变换到机器人运动空间,驱动机械手,完成伺服任务。该方法对标定误差和空间模型误差不敏感。

  对于机器人视觉伺服系统,实时性问题一直是一个难以解决的重要问题。图像采集速度较低以及图像处理需要较长时间会给系统带来明显的时滞;此外视觉信息的引入也明显增大了系统的计算量。而图像处理速度是影响视觉伺服系统实时性的主要瓶颈之一。

  实时图像处理设计的难点是如何在有限的时间内完成对大量图像数据的处理。从人的视觉理论分析,只有图像处理系统的处理速度达每秒25帧以上时才能达到实时的效果,即要求实时图像处理系统必须在40ms内完成对一帧l图像的运算处理,才能保证图像的实时性。为了达到该处理速度,我们采用了基于DSP的图像视觉伺服方式,其结构如图1所示。

图1 基于DSP的图像反馈机器人视觉伺服结构图

  2.1 WTC6201PA板简介

  本文选用了闻亭公司的WTC6201PA板,其板上硬件组成如图2所示。

图2 WTC6201PA板硬件组成

  WTC6201PA板属于EVM板中的一种,它采用了TI公司的DSP器件TMS320C6201芯片。TMS320C6201芯片的最高时钟频率为200MHZ,每个时钟周期最多可以执行8条指令,从而实现16000MIPS的定点运算能力,它具有如下主要特点:

· 采用了修正的哈佛总线结构,独立的程序总线、数据总线和DMA总线使得取指、读写数据和DMA操作可以并行。

· 采用流水线处理,使两个或多个不同的操作可以重叠执行,提高了程序执行速度。

· 具有高性能的外部存储器扩展接口EMIF,可以直接与同步突发静态存储器SBSRAM、同步动态存储器SDRAM连接,用于大容量、高速存储;还包括直接异步存储器接口,可与静态存储器SRAM、只读存储器EPROM连接,用于小容量的数据存储和程序存储;芯片内部集成的64K程序存储器可配置成CASHE,以提高程序执行效率。
· 16位主机口能够和其它CPU的存储区以及外围电路进行通信。且多通道DMA控制器可在没有CPU参与的情况下完成映射存储空间中的数据搬移,从而减轻CPU的工作量。

  同时板上配置了高速同步存储器SBSRAM(128K×32Bit)和SDRAM(4M×32bit),两路A/D转换器,大容量的FPGA器件和外部I/O接口,板上还提供了一个McBSP接口,兼容5V TTL电平,方便用户与外部系统通信。WT6201PA板满足PCI Local Bus Revision 2.1 协议,主机可访问DSP的所有资源,用户可通过主机加载程序。WTC6201PA板提供了Win98和NT下的驱动软件及DSP的应用软件(APIs),利用这个硬件平台和底层软件库,用户可以很容易的进行软件开发。

  2.2 系统硬件实现

我们选用了WTC6201PA板上的TMS320C6201芯片、FPGA、SBSRAM、SDRAM、双口RAM、PCI总线、JTAG接口等硬件资源作为视觉图像处理单元,和PC主控机、图像采集卡、CCD摄像机和机器人控制系统组成系统,原理框图如图3所示。

图3 系统原理框图

  系统工作过程如下:

  CCD摄像机输出标准制式的全电视信号,其中包含着图像信号、复合同步信号、行、场消隐信号、槽脉冲和前后均衡脉冲等七种信号。本系统采用了北京大恒公司的DH-PCI-H图像采集卡来实现视频信号的预处理。CCD摄像机将视频数据输入到图像采集卡,图像采集卡按照设定的窗口位置、大小和方式采集视频数据,采集的数据存储在计算机的内存中。图像传输由图像卡控制的,无需CPU参与,图像传输速度可达40MB/S。

  设置图像采集卡的采集方式是25帧/s连续采集,则采集一帧的时间为40ms,每一帧图像由奇偶两场组成,场频为50HZ,即一场扫描时间为20ms。图像采集大小为512×512像素,量化为8bit,256灰度级,则一帧图像的数据量为512×512×8bit=256KB。图像数据存储方式为隔行存放,即奇、偶场的图像数据交叉存放,组成一帧完整图像函数。

  C6201由BOOTMODE[4:0]设置芯片的自举方式,加载过程采用主机(HPI)引导方式。外部主机通过主机口初始化CPU的存储空间,主机完成所有的初始化后,将主机口控制寄存器中的DSPINT位设置为1,结束引导过程。CPU退出复位状态,开始执行地址0处的指令。

  系统上电后,主机经HPI口对系统初始化,主要完成对各寄存器的设置,包括EMIF、中断、DMA等相关的寄存器初始化操作等。主机向HPI控制寄存器的DSPINT位写1触发DSP运行,系统进入等待状态。CCD摄像机实时采集图像,经图像采集卡处理后存储到主机内存。PC机内存缓冲区一帧存满,向DSP发中断信号,DSP应答后,通过PCI总线将图像数据从主机内存经HPI口传输到WTC6201PA板片外SDRAM。DSP控制波门范围内图像数据以DMA方式传输到内部数据存储器。由于DSP为指令结构处理芯片,具有可编程性好、可以处理大量复杂指令(由程序RAM地址空间的大小决定)等优点,但相对FPGA而言其处理速度比较慢;而FPGA为可编程逻辑器件,具有很强的细粒度并行处理和多级流水线处理能力,但其内部有限的逻辑资源使之不适合实现复杂逻辑运算。因此我们采用FPGA作为协处理器来完成底层操作,再由DSP完成高层操作,两种操作可以采用流水线的方式并行运行,共同完成高速图像处理。从FPGA到DSP之间的图像数据传输使用双端口RAM。处理完一帧图像后,DSP向主机发信息,主机应答后,将图像处理结果经PCI总线传输至PC机内存,PC机再将位置偏差数据信号送至伺服控制系统,完成伺服任务。

  3 图像雅可比矩阵

  对于图像反馈机器人视觉伺服系统控制机构,图像雅可比矩阵是很关键的,它描述了机器人空间中的运动与图像特征空间中的运动之间的关系:

式 (2),(4)是图像雅可比矩阵的两种表示形式,是基于图像反馈的视觉跟踪研究的基础。需要指出的是,为了确保得到唯一的图像特征矢量,图像特征空间维数应该大于或等于位姿空间维数(n≧m)。

  计算图像雅可比矩阵的方法有在线估计法、经验方法和学习方法。在线估计法通过动态估算得到图像雅可比矩阵;经验法可以通过标定或先验模型知识得到图像雅可比矩阵;学习方法主要可以利用离线示教和神经网络方法得到雅可比矩阵。

  结论

  本文分析了机器人视觉伺服系统的基本原理,并设计了基于TMS320C6201和可编程逻辑器件FPGA协处理结构的视觉系统,实现了图像采集和图像目标的实时处理。在实验室中我们利用所设计的视觉系统构建了实验平台,通过实验验证了所设计的视觉系统满足机器人视觉伺服系统的实时要求。

  本文作者创新点:对于机器人视觉伺服系统,实时性问题一直是一个难以解决的重要问题。本文创新采用TMS320C6201芯片来实现机器人视觉伺服的图像处理,并采用FPGA协处理,提高了图像处理速度,实验验证了所设计系统满足机器人视觉伺服的实时要求,具有广泛的工业应用前景。

关键字:视觉伺服  图像处理  TMS320C6201  实时性  图像雅克比矩阵 引用地址:基于DSP的机器人视觉伺服系统研究与设计

上一篇:采用FPGA实现视频监视
下一篇:基于FPGA的DVI/HDMI接口实现

推荐阅读最新更新时间:2024-05-02 20:48

智能视频监控系统及其在Blackfin上的应用
  1. 视频监控系统的现状   视频监控系统从最初的模拟闭路电视监控开始,经历了数字化,网络化的发展,正在向分布式、智能化的方向迈进。视频压缩技术的发展促进了视频监控系统的数字化,节约了大量的存储空间。   计算机网络的普及和带宽的增加使得城域网视频监控成为现实。而经过科研人员40多年的不懈努力,计算机视觉已经进入突破式发展阶段。得益于计算机视觉的研究成果,智能视频监控系统开始得到产业化应用。   从上世纪90年代中期开始,以卡耐基梅隆大学(CMU)和麻省理工学院(MIT)为代表的,多家美国高校所参与的,由美国国防高级研究项目署设立的视觉监控重大项目VSAM(Visual Surveillance and Monito
[嵌入式]
智能视频监控系统及其在Blackfin上的应用
采用FPGA实现视频和图像处理设计(图)
  视频和图像处理发展趋势   以视频和图像处理为核心的HDTV和数字影院等创新技术的进展非常迅速,其推动力量在于图像采集和显示分辨率、高级压缩方法以及视频智能的跨越式发展。   在过去几年中,分辨率的发展最为显著,表1列出了不同终端设备上目前能够达到的最高分辨率。   从标准清晰度(SD)过渡到高清晰度(HD),需要处理的数据量提高了6倍。视频监控也从普通中间格式(CIF)(352×288)转向标准要求的D1格式(704×576),某些工业摄像机甚至达到1280×720HD。军事监控、医疗成像和机器视觉也普遍采用了分辨率非常高的图像。   高级压缩方法逐步替代了以前的技术,在保持一定质量的前提下,能具有更好的数据流性能
[医疗电子]
基于DSP的MEMS陀螺仪信号处理平台的设计
  0 引 言    陀螺仪是一种能够精确地确定运动物体方位的仪器,它是现代航空、航海、航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其他高科技的发展具有十分重要的战略意义。    近年来随着MEMS(微机电系统)技术的发展,MEMS陀螺仪的研究与发展受到了广泛的重视。MEMS陀螺仪具有体积少、重量轻、可靠性好、易于系统集成等优点,应用范围广阔。但是目前MEMS陀螺仪的精度还不是很高,要想大范围应用必须对MEMS陀螺仪的信号进行处理。    本文选用TI公司的TMS320VC33作为MEMS陀螺仪信号处理平台的核心芯片,同时引入DSP/BIOS实时操作系统提供的多任务处理机制,在对陀螺仪信号
[嵌入式]
欧胜推出创新的图像处理解决方案系列新品
英国爱丁堡,2011年4月20日 – 欧胜微电子有限公司今日宣布:推出一系列全新的模拟前端(AFE)数字化芯片,它们能够很方便地集成到最新一代办公或家用图像处理设备中,这些设备包括数字复印机、扫描仪(包括便携式条码阅读器)和多功能打印机(MFP)。 作为欧胜图像处理产品组合的一部分,WM8232、WM8233、WM8234 和WM8235处理和数字化从电荷耦合器件(CCD)或者接触式图像传感器(CIS)输出的模拟信号。它们提供了多样化的通道和模拟数字转换(ADC)配置,可让系统设计师去选择最适合其目的的配置。对于用户来讲,这意味着在得到更高的扫描分辨率时实现更高的扫描速度,同时其灵活的架构使工程师更易于将这些产品设计进其
[模拟电子]
一种基于高速DSP的图像处理应用平台的设计
   引言   完成某一特定任务的图像处理系统,其硬件方案大体上有三种:使用通用计算机 、使用ASIC(Application Specific Integrated Circuit) 和使用DSP(Digital Signal Processor) 。使用通用计算机的方案可以应用现有的硬件设备,选择合适的操作系统,只需要进行应用程序的开发。其优点在于开发周期短,费用较低,而且产品易于维护和升级;缺点是运算速度受到限制,对于算法的运算量和复杂度很高的应用场合,难以达到实时性要求。该方案有二种应用场合:算法开发初中期阶段及一些实时性要求不高的领域。使用ASIC的方案中,所有的运算都由硬件实现,因此实时性会非常好,但硬件的设计是一大
[嵌入式]
利用FPGA的DSP功能提高图像处理的实例分析
        intevac是商用和军用市场光学产品的前沿开发商。本文介绍该公司nightvista嵌入式电子系统的开发,该产品是高性能超低亮度紧凑型摄像机。该摄像机最初采用了流行的数字信号处理器、几个assp和外部存储器件。系统对性能的需求越来越高,工程师团队决定试验一种替代方案——在可编程逻辑中实现可配置软核处理器。这一决定带来了以下好处: 达到了目标所要求的性能 在单个fpga中集成了分立的元件和数字信号处理(dsp)功能 功耗降低了近80% 将五块元件板缩减到一块,显著降低了成本 缩短了开发时间 图1  intevac nightvista摄像机中cyclone系列fpga功能框图
[嵌入式]
机器人视觉伺服控制系统有哪些分类方式?
视觉伺服系统是和机器人控制的有机结合,是一个非线性、强的复杂系统,其内容涉及图象处理、机器人运动学和动力学、控制理论等研究领域。随着摄像设备性能价格比和计算机处理速度的提高,以及有关理论的日益完善,视觉伺服已具备实际应用的技术条件,相关的技术问题也成为当前研究的热点。 机器视觉,美国制造协会(smesocietyofmanufacturingenginee)机器视觉分会和美国机器人协会(riarobocindustriesassociation)的自动化视觉分会给出的定义是:“机器视觉是通过光学的装置和非接触的自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置。” 机器视觉作为与人眼类
[机器人]
富士通推出面向数码单反相机的图像处理系统LSI
富士通微电子(上海)有限公司宣布,富士通株式会社已开发出面向数码SLR(单反相机,也称单眼相机)图像处理系统LSI-“Milbeaut”的新产品(产品号为“ MB91680”),并于2月1日起投放市场。 “MB91680”是富士通公司首次运用90纳米CMOS(互补性金属氧化半导体)技术的通用型LSI。该产品以低电力消耗实现数码SLR的高画质图像处理,是这个领域中最高规格的系统LSI产品。本产品由富士通VLSI株式会社以及富士通Micro Solutions株式会社共同开发。 该公司的图像处理系统LSI-“Milbeaut”能将图像处理所必需的压缩及去除噪声等功能集成在一块芯片上,并能应用在数码相机、手提电话等许多产品中。 此
[安防电子]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved