既然是定点处理器,那么其对定点数,或者说字面意义上的“整数”进行处理的效率就会比它处理浮点类型的运算要高的多。所以在定点处理器上,我们使用定点的整数来代表一个浮点数,并规定整数位数和小数位数,从而方便地对定点数和浮点数进行转换。以一个32位的定点数为例,假设转换因子为Q,即32位中小数的位数为Q,整数位数则为31-Q(有符号数的情况),则定点数与浮点数的换算关系为:
定点数=浮点数×2^Q
例如,浮点数-2.0转换到Q为30的定点数时,结果为:
定点数=-2×2^30=-2147483648
32位有符号数的表示范围是:-2147483648到2147483647。如果我们把有符号定点数的最大值2147483647转换为Q为30对应的浮点数,则结果为:
浮点数2147483647/2^30=1.999999999
从上面的两个计算例子中也可以看出,在Q30格式的情况下,最大的浮点数只能表示到1.999999999,如果我们想把浮点数2.0转换为Q30的定点数,则产生了溢出,即造成了1e-9的截断误差。在此我们列出Q0到Q30对应的范围和分辨率如下表所示:
如果你嫌自己计算麻烦的话,可以借助Matlab的命令来求取它们的转换,例如,在Matlab的命令窗口中输入:
q = quantizer('fixed', 'ceil', 'saturate', [32 30]);
FixedNum=bin2dec(num2bin(q,1.999999999));
回车之后就可以看到1.999999999转成Q30之后的定点数了。
弄清楚了单个浮点数和定点数之间的转换关系,接下来就需要了解一下两个定点数所代表的浮点数进行运算时,是如何转换的了。根据乘法的结合律、分配率,浮点数转换之后的定点数是可以直接运算的,例如:
1. 不同Q格式的转换
设有定点数Fixed1=Float1*2^Q1,如果把它用为Q2这个不同精度/表示范围的定点数来表示,则有Fixed2=Float1*2^Q2。所以不同的Q格式直接的转换为:
Fixed2=Fixed1*2^Q2/2^Q1=Fixed1*2^(Q2-Q1)
因为Fixed1、Fixed2都是定点数,所以在C编程的情况下,我们可以使用高效的左移、右移操作来完成这个乘以2^(Q2-Q1)的操作。
2. 两个相同Q格式的定点数:
Fixed1=Float1*2^Q
Fixed2=Float2*2^Q
则加法操作为:
Float1+Float2=Fixed1/2^Q+Fixed/2^Q=(Fixed1+Fixed2)/2^Q
对于上述的加法操作,如果定点数的和Fixed1+Fixed2超过了32位整数的极值,则会发生溢出现象,造成结果的不正确,此时我们只能先损失一倍的精度,把Float1、Float2的Q值变为Q-1.
乘法操作为:
Float1*Float2=Fixed1/2^Q*Fixed/2^Q= Fixed1*Fixed2/2^(2Q)
同样的道理,如果Fixed1*Fixed2之后的定点数超过了32位整数的极值,则我们也需要提前对它们进行一下折算,变换一下它们的Q值。这就涉及到对结果的一个预估问题,也是定点编程不如浮点编程简单、高效的不足之一。
3. 两个不同Q格式的定点数:
Fixed1=Float1*2^Q1
Fixed2=Float2*2^Q2
运算的规则是结合了前面的两种情况,只不过多了额外的转换工作:要么把其中的一个Q1格式的定点数先转换为另一个Q2格式,要么把它们都转换为一个中间值Q3格式的定点数,然后再进行运算。
这些运算虽然并不复杂,但是如果在数学运算比较多的情况下,一个个的进行手工转换还是比较麻烦的,还好在近些年的处理器特别是DSP芯片中,在其BootROM中都内置了强大的数学表来帮助我们完成这些转换工作,我们只要按照一定的格式进行书写,那么编译器就会自动调用相关的库函数来完成了。以TI的C28x系列DSP为例,我们可以使用现成的IQMath库来完成这些繁琐的工作。它的使用方法示例为
1)在工程属性中引用IQmath.lib库文件
2)在使用IQMath库函数的主程序中引用相关的头文件:
#include
#define PI 3.14159
_iq input, sin_out;
void main(void )
{
/* 0.25 x PI radians represented in Q29 format*/
input=_IQ29(0.25*PI);
sin_out =_IQ29sin(input);
}
其中,我们可以在头文件中指定一个全局的Q格式,在不需要特别指定Q值的时候,使用默认的值。
例如,在头文件中#define Q 28,则我们在程序中调用IQMath库函数时,
sin_out =_IQsin(input);//使用全局定义的Q28格式
sin_out =_IQ29sin(input); //特别指定使用Q29格式
默认情况下,编译器使用的Q格式是24,如果追求更高的精度,则可以使用更大的Q值,但是相应地表示的浮点数的范围也要小,此时可以考虑使用标么值,使得大部分变量的值都处在-1到1的区间内。
此外,在C语言编程时,调用方式是_IQsin(input),在C++编程时,则直接使用IQsin(input)就可以了。
3)在CMD链接文件中指明IQMath数学表的位置:
例如,对于281x器件:
MEMORY
{
PAGE 0:
PRAMH0 (RW) : origin = 0x3f8000, length = 0x001000
PAGE 1:
IQTABLES (R) : origin = 0x3FF000, length = 0x000b50
DRAMH0 (RW) : origin = 0x3f9000, length = 0x001000
}
SECTIONS
{
IQmathTables : load = IQTABLES, type = NOLOAD, PAGE = 1
IQmathTablesRam : load = DRAMH0, PAGE = 1
IQmath : load = PRAMH0, PAGE = 0
}
对于2833x器件:
MEMORY
{
PAGE 0:
PRAML0 (RW) : origin = 0x008000, length = 0x001000
PAGE 1:
IQTABLES (R) : origin = 0x3FE000, length = 0x000b50
IQTABLES2 (R) : origin = 0x3FEB50, length = 0x00008c
DRAML1 (RW) : origin = 0x009000, length = 0x001000
}
SECTIONS
{
IQmathTables : load = IQTABLES, type = NOLOAD, PAGE = 1
IQmathTables2 > IQTABLES2, type = NOLOAD, PAGE = 1
{
IQmath.lib
}
IQmathTablesRam : load = DRAML1, PAGE = 1
IQmath : load = PRAML0, PAGE = 0
}
对于280x器件:
MEMORY
{
PAGE 0:
PRAML0 (RW) : origin = 0x008000, length = 0x001000
PAGE 1:
IQTABLES (R) : origin = 0x3FE000, length = 0x000b50
IQTABLES2 (R) : origin = 0x3FEB50, length = 0x00008c
IQTABLES3 (R) : origin = 0x3FEBDC, length = 0x0000AA
DRAML1 (RW) : origin = 0x009000, length = 0x001000
}
SECTIONS
{
IQmathTables : load = IQTABLES, type = NOLOAD, PAGE = 1
IQmathTables2 > IQTABLES2, type = NOLOAD, PAGE = 1
{
IQmath.lib
}
IQmathTables3 > IQTABLES3, type = NOLOAD, PAGE = 1
{
IQmath.lib
}
IQmath : load = PRAML0, PAGE = 0
}
为了方便数学运算的高效处理,IQMath库中还包含了常用的数学运算函数,包括:
1. 格式转换
IQN浮点转定点,IQNtoF定点转浮点,atoIQN字符串转定点,IQNtoa定点转字符串,IQNint返回定点数的整数部分,IQNfrac返回定点数的小数部分,IQtoIQN和IQNtoIQ为指定Q格式与全局Q格式的互转,IQtoQN和QNtoIQ为32位与16位互转,IQmpy2, 4, 8..64即左移,IQdiv2, 4, 8..64即右移
2. 算数运算
IQNmpy和IQNrmpy:乘法,IQNrsmpy为带饱和的乘法。IQNmpyI32和IQNmpyI32int为定点数与32位整数的乘法,IQNmpyI32frac可返回结果的小数位数。QNmpyIQX:不同Q格式的定点数相乘。
IQNdiv:除法运算。
3. 三角运算
包括IQNasin,IQNsin,IQNsinPU,IQNacos,IQNcos,IQNcosPU,IQNatan2,IQNatan2PU,IQNatan。
其中,PU的含义在该函数中π已经折算为1。例如:
sin(0.25*π)=sinPU(0.25)。
4. 代数运算
包括IQNexp,IQNlog,IQNsqrt,IQNisqrt,IQNmag,IQNabs,IQsat
上一篇:基于射频技术的穿戴式医疗仪器的设计
下一篇:一种基于HD-SDI技术的高清图像处理系统设计
推荐阅读最新更新时间:2024-05-02 23:15