基于DSP芯片与CAN总线的电源监控系统设计

发布者:幸福旅程最新更新时间:2015-09-27 关键字:芯片  电源  监控  监控系统 手机看文章 扫描二维码
随时随地手机看文章
  电源技术发展的方向之一是运用电源模块并联技术实现功率合成,组成积木式、智能化的分布式大功率电源系统。为使并联的各个模块协调工作,对分布式电源系统进行可靠的监控是电源技术发展的热点之一。 目前对分布式电源监控普遍采用的做法存在的问题主要在数字化程度不高,速度不够快,精度和可靠性不够高等问题,然而在工业控制中电源控制显的十分的重要。

1电源监控系统总体设计

传统电源系统并联系统多是采用模拟的方法实现模块间的电流均流的,但存在着一些共同的不足:必须有均流控制母线,需要增加专门的均流控制器。且均流母线属于模拟电平信号线,抗干扰能力较弱;难于保证电源模块调制频率的一致。同时,当多个子并联电源单元组成分布式电源系统时,对整个系统进行实时、准确的统一监控和调度意义重大。

电源监控实现的前提条件就是能在各子单元和监控单元之间通信,本系统设计就使用了在工业场合经常使用的具有存在自适应、自保护功能脆强,抗干扰能力强的CAN总线。

本系统由8块控制单元和1块中央监控单元组成。控制单元和监控单元之间通过CAN总线进行数据传输,各单元自成一个CAN节点。每个单元的核心处理器都是TI公司的TMS320F2812 DSP芯片。每个控制单元有一个用户而板与之对应。控制单元和面板完成每层电源模块的电源参数采集,均流基准输出,“遥/本采”及“遥,本调”切换,面板状态信息显示:中央监控单元完成对各层控制单元采集数据的实时汇总显示以及对各层电源模块的“遥调”,系统整体结构。

系统控制单元结构图

2系统中央监控单元与外围电路设计

中央监控单元可实现模块信息的汇总显示和对各层电源的“遥调”。各层控制单元采集和处理的数据经CAN总线传送给中央监控单元。这些信息可以在OLED屏幕上分页显示,可接受来自键盘的操作自由选择要显示的信息。“遥调”值也是通过键盘输入得到。本系统选用的处理器是TI公司的TMS320F2812,此处理器是一款32位定点数字信号处理器,处理速度可以达到150MIPS.该处理器还集成了128KB的Flash存储器和128位的密码保护机制,从而大大改善了应用的灵活性。同时片上还集成了16通道高性能12位ADC单元,提供了两个采样保持电路,可以实现双通道信号同步采样,中央监控单元结构图如图2所示。

中央监控单元结构图

2.1ADC模块电路设计

TMS320F2812内部的ADC模块是一个12位带流水线的模数转换器,模数转换单元的模拟电路包括前向模拟多路复用开关(MUXs)、采样/保持(S/H)电路、变换内核、电压参考以及其他模拟辅助电路。模数转换单元的数字电路包括可编程转换序列器、结果寄存器、与模拟电路的接口、与芯片外设总线的接口以及其他片上模块的接口,ADC模块接线。

ADC模块接线图

2.2 eCAN模块电路设计

CAN总线是一种多主串行通信方式,具有高级别的安全性,可以有效地支持分布式适时控制。CAN总线具有较强的抗干扰能力,可以在强噪声干扰和恶劣工作环境中可靠的工作TMS320F2812的CAN控制器为DSP提供完整的CAN协议,减少了通信时的处理器开销。eCAN模块主要由CAN协议内核fCPK)和消息控制器构成。

CAN协议内核主要完成两个功能:根据CAN协议对CAN总线上接收到的消息进行解码,向接受缓冲发送解码后的消息:CAN协议内核的另外一个功能是根据CAN协议在CAN总线上传送消息。消息控制器对CAN协议内核接收到的消息进行判定,决定留给CPU使用还是丢弃,消息控制器还根据消息的极性将下一个消息发送到CAN协议内核(CPK)。CAN通信电路中,其中Rx和Tx分别是DSP的GPIOF7和GPIOF6引脚。上电初始它们默认为通用I/O引脚,通过软件配置町实现为eCAN模块接收和发送数据。

本系统使用的是德州仪器公司生产的SN65HVD2303.3V CAN收发器,该收发器具有一差分收发能力、斜率控制、具有一抗宽范围的共模干扰、电磁干扰(EMI能力、高输入阻抗和最多允许120个CAN节点等特点。SN65HVD230具有一高速、斜率和等待3种不同的工作模式。其工作模式控制可通过设置RS控制引脚来实现。

本设计中,考虑到信息的实时显示和控制以及传送的数据量较大且通信距离不长,为了提高信息的实时显示和控制能力,故采用高速模式。把RS引脚接地。由于各个控制单元电气上是隔离的,通过光隔把控制单元和CAN通信部分隔离开来。为了电平匹配,采用了LVTTL/LVCMOS兼容高速光隔,本设计采用Agilent公司的HCPL-260L. 2.3 DAC电路设计本设计中,DAC采用ADI公司的DAC8562.这是一款12位并行DAC供电电源+5V.由于本系统的外部供电电源也是5V,而12位的精度足以演足系统要求,故采用此款DAC,AC8562和DSP的连接电路见图4所示:

DAC的连接电路图

2.4 OLED显示电路设计

中央监控单元的信息显示采用OLED屏。有一机发光显示OLED是比液品显示技术更为先进的新—代平板显示技术,是被业界公认为最具发展前景的下一代显示技术。本设计采用的是Visionox公司的最新产品VGGl2864E-S001.这是128 x 64行点阵的OLED单色、字符、图形显示模块。模块内藏64 X 64的显示数据RAM,其中的每位数据都对应于OLED屏上一个点的亮、暗状态,具有8位行数据接口,读写操作时序,接口电路简单等特点。

OLED模块的访问有直接访问方式和间接访问方式。直接访问方式下,OLED的读写使能信号E由DSP的XRD和XWE组合产生。间接访问方式下,包括E在内的所有控制信号均接到DSP的I/O口上,通过软件模拟OLED的读写操作时序。在设计时综合考虑到两种操作方式,把XRD、XWE、DSP的I/O以及OLED的控制信号均引到CPLD内,方便以后的选择和调试。OLED与DSP的连接电路图见图5.

OLED与DSP的连接电路

3系统软件设计

程序开始对GPIO,ADC.ECAN等各个外设初始化,进入死循环。在循环里,程序启动各个外设并成相应的功能,其程序流程图如图6所示。

图6控制单元软件流程图

CAN总线通信软件的设计包括应用层协议制定和实施、明确各节点的功能以及相互交互的数据、规定数据每—位的确切含义以及要做的响应处理。CAN节点软件设计的主要分三个部分,即初始化CAN模块、数据发送程序、接收程序。CAN模块使用之前必须要进行初始化。

首先,设置CANTX和CANRX做为CAN的通信引脚。在标准的T作模式下,通过把CCR(CANMC.12)置1,使CAN模块工作在初始化模式。等待当CCL(CANLS.4)为1时,才能执行初始化操作。初始化操作首先要进行位时间配置寄存器CANBTC的设置。CANBTC设置决定总线传输信号的波特率,是CAN控制器模块的核心配置问题,CAN初始化配置流程图.

 

CAN模块的初始化配置

4结论

本文创新点:在数字化电源监控逐渐流行的今大,本文提出了一种基TMS320F2812 DSP芯片的针对分布式多模块电源的监控系统,该监控系统以稳定,安全,传输速度高的CAN通信技术作为本系统模块间通信方式,考虑到系统扩展的需要,选用含用大存储空间的处理芯片,方便系统程序的扩展;同时,选片时尽量考虑集成度高,可靠性高,针对系统功能需求的处理芯片和外围功能电路。本系统注重实际效用,在实际的工业控制中,系统工作稳定。

关键字:芯片  电源  监控  监控系统 引用地址:基于DSP芯片与CAN总线的电源监控系统设计

上一篇:基于DSP的大功率开关电源的设计
下一篇:一种利用HPI接口实现DSP应用程序远程更新的方法

推荐阅读最新更新时间:2024-05-02 23:59

加特兰发布全新Alps系列毫米波雷达芯片
集微网消息,3月21日,加特兰微电子在上海浦东嘉里大酒店正式发布了其革命性的Alps系列毫米波雷达系统单芯片。 继2017年发布第一代77GHz毫米波雷达射频单芯片后,此次加特兰微电子为业界带来了更高集成度的系统单芯片。 Alps系列芯片集成了高速ADC、完整的雷达信号处理baseband以及高性能的CPU核。此次发布会上更是推出了集成片上天线的AiP(antenna in package)产品。 自2017年第一代77GHz CMOS毫米波雷达芯片发布后,加特兰微电子与下游应用厂商开展了广泛的合作,成功在汽车前装市场量产,同时在交通、安防、安检成像等领域也取得突破,在全球已与90多家客户展开合作。与此同时,经过两年的刻苦钻
[手机便携]
加特兰发布全新Alps系列毫米波雷达<font color='red'>芯片</font>
浅析低功耗多模式大功率电源制作步骤
  今天小编为大家带来的 开关电源 技术是基于DSP的大功率高频开关 电源 电路的解析,本电路充分发挥了DSP强大功能,可以对开关电源进行多方面控制,并且能够简化器件,降低成本,减少功耗,提高设备的可靠性。    1、电源的总体方案   本文所设计的开关电源的基本组成原理框图如图1所示,主要由功率主电路、DSP控制回路以及其它辅助电路组成。   开关电源的主要优点在 高频 上。通常滤波电感、电容和 变压器 在电源装置的体积和重量中占很大比例。从 电路 和 电机学 的有关知识可知,提高开关频率可以减小滤波器的参数,并使变压器小型化,从而有效地降低电源装置的体积和重量。以带有铁芯的变压器为例,分析如下:   图1系
[电源管理]
浅析低功耗多模式大功率<font color='red'>电源</font>制作步骤
法规助推防黑观念 车辆安全芯片蓄势待发
汽车的智慧化功能持续增加,辅助驾驶等技术更佳完善,但是联网也为车用系统带来更多资安风险。世界车辆法规协调论坛(WP.29)公布UN R155及R156,规范车内的资安管理并要求汽车导入符合标准的软体更新系统,确保汽车的 OTA 更新安全。因此车厂与供应链厂商都关注到ISO/SAE 21434等认证,期望确保资安滴水不漏。同时,汽车 芯片 做为车用系统的基础与核心,芯片本身是否安全无漏洞,以及面对汽车可能面临的安全风险,晶片供应商需要准备更为完善的资安防护策略,从硬体层面确保资讯安全。整体的汽车资安防护,需要藉由达成法规要求,并整合硬体与软体的安全设计,才能确保系统运作顺畅且驾驶与乘客的人身安全无虞。 R155时程带动供应链资安
[汽车电子]
法规助推防黑观念 车辆安全<font color='red'>芯片</font>蓄势待发
基于TOPSwitch-GX系列的伺服系统多输出开关电源
1 引言 多路输出开关电源广泛应用在各种复杂小功率电子系统中,就多路输出而言,通常只有输出电压低、输出电流变化范围大的一路作为主电路进行反馈调节控制,以保证在输入电压及负载变化时保持输出电压稳定,由于受变压器各个绕组间的漏感和绕组电阻等的影响,辅助输出电压随输出负载的变化而变化,通常,当主输出满载和辅助输出轻载时,辅助输出电压将升高,而当主输出轻载和辅助输出满时,辅助输出电压将降低,这就是多路输出的负载交叉调整率问题,笔者基于TOPSwitch-GX系列设计了一种多路输出开关电源,很好的解决了多路输出的负载交叉调整率问题,该电源在各种工况下都能稳定输出,主输出电压纹波小于3%,各路辅助输出纹波小于5%,负载交叉调整率小于5%,
[电源管理]
多媒体处理器动态电源管理技术
   多媒体处理器通常是便携式电子设备中功耗最高的器件。降低 CPU 功耗要求的常见方法是降低时钟频率或工作电压,但是一般而言这样做会使系统性能降低。另一方面,芯片设计人员还提出了各种片上方法来降低功耗,并且不会对系统产生不利影响。本文介绍了这些方法的概念,以及我们如何运用它们实现节能的目的,同时还讨论了帮助处理器芯片获益的一些外部电源管理器件和电源 IC。     一、有源电源管理     片上电源管理技术主要适用于两类应用:管理有源系统功耗和管理待机功耗。   有源电源管理分为三个部分:动态电压与频率缩放 (DVFS);自适应电压缩放 (AVS);以及动态电源转换 (DPS)。另一方面,静态功耗管理包
[电源管理]
多媒体处理器动态<font color='red'>电源</font>管理技术
中国4G芯片出货 联发科几乎追上高通
高通和联发科(2454)今年转进4G LTE战场,欧系外资认为,新兴市场和LTE机款及穿戴物联网等,是推升今年智慧手机的主要动能,中国智慧手机出货将年增13%,上看4.73亿支,高通与联发科LTE晶片在中国出货差距不分轩轾,各达1.3亿套、1.25亿套,4G近身肉搏战愈演愈烈。 市调机构调查,以2014年至2017年智慧手机产业出货年复合成长率将放缓至5%,欧系外资认为,如果以2014年至2017年营收年复合成长率来看,成长力道仅约3.1%。但今年是LTE机款急速看增的1年,中国品牌在LTE机款将有3.23亿支水准。 联发科去年上半年在4G手机晶片缺席,下半年急起直追,去年底市占率约20%,仍远落后对手高通的60~70%,但外
[手机便携]
TI拟收购国家半导体 主导电源管理及驱动IC市场
      德州仪器(Texas Instruments Incorporated)4日于美国股市收盘后宣布,该公司将以每股25美元的现金(相当于65亿美元)收购国家半导体(National Semiconductor),双方已签定最终协议。双方董事会一致通过这项决议,预期所有相关程序将在6-9个月内完成。国家半导体5日闻讯暴涨71%,收24.06美元,创2007年12月12日以来收盘新高。德州仪器5日上涨1.7%,收34.69美元。   据了解,德仪拥有30,000项类比IC产品、客户层面广泛,且拥有领先业界的制造技术,当中包括全球第一座12寸类比IC厂房。国家半导体则拥有12,000项类比IC产品、与工业电源市场的客户关系
[电源管理]
芯片在智能汽车中的地位将越来越重要
过去,我们经历了新冠疫情,经历了很多的冲击和挑战,汽车芯片问题变成了主机厂都放在嘴边的话题。过去三个季度,特别是三季度八月份和九月份,整个行业的产销量受到比较大的影响,其中最大的原因不是没有市场、没有技术,而是因为出现了芯片的供应的问题。目前,汽车芯片已成为整个产业发展的关键环节,甚至有可能成为制约产业快速提升的一个瓶颈环节。 从机械定义汽车、电气定义汽车,到软件定义汽车,未来用户希望开着的车能像手机、平板一样方便。这个过程中,到底哪些要素更关键、更影响整个产业的发展趋势?这是我们一直在探讨的,可以看到这些要素其实都回归到了一个核心要点,就是数据和硬件。硬件就是我们所说的芯片。最近也在提,车厂传统的收益模式是什么?是不是由传统
[嵌入式]
小广播
热门活动
换一批
更多
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved