基于Virtex-5 FPGA设计Gbps无线通信基站

发布者:muhaoying2017最新更新时间:2008-12-18 来源: 电子产品世界关键字:Virtex-5  通信  信号处理 手机看文章 扫描二维码
随时随地手机看文章

 

引言
  
随着以TD-SCDMA为代表的3G移动通信全面进入商用部署,LTE标准基本完成,华为、爱立信成功实现LTE标准的现场演示[1],以LTE-A、IMT-Advanced为标准的下一代移动通信技术、标准与系统的研发也已经开始。
  
国际电信联盟(ITU)已将3G之后的未来移动通信技术正式定名为IMT-Advanced,在2007年世界无线电大会为之分配了新频段,并已经在2008年开始征集标准提案。中国也通过IMT-Advanced推进组开始为ITU技术提案征集的准备工作[2],提出国内技术提案应具有高频谱效率、低系统时延等特点,主要技术指标应达到:5-100MHz的可变系统带宽;在固定和低速移动情况下支持1Gbps的峰值速率,在高速移动情况下支持100Mbps;基站侧最多8根天线,终端侧最多4根天线;在移动性上最高支持500km/h的移动速度。
  
随着技术研究与提案工作的进行,基站系统的研发也已经开始。本文研究工作依托于国家“863”计划Gbps 无线传输关键技术与试验系统研究开发项目,研制面向LTE-A、IMT-Advanced等未来移动通信标准,能够验证相关技术并达到标准技术指标的新型移动通信基站原型。
  
Gbps无线通信系统的算法链路设计
  
为满足未来移动通信标准的需要[3],在算法链路上Gbps系统采用时分双工(TDD)、多天线(MIMO)、空时编码、正交频分复用(OFDM)、高阶调制和LDPC编码等高性能物理层传输技术,以实现Gbps系统所需的高数据速率业务传输和高频谱效率。以频分、时分为主的多址方式实现,能够在多天线环境下对无线资源进行灵活调配,在兼顾实时话音传输的同时,最大程度上满足分组数据传输的需要。
  
具体而言,Gbps系统使用3.4GHz频段,实际带宽100MHz,移动台采用2发4收的天线,基站采用4发8收的天线,OFDM子载波数为2048子载波,有效为1664子载波。图1是Gbps无线传输系统的算法链路示意图。



图 1 Gbps无线传输系统算法链路
  
Gbps基站系统的设计实现考虑
  
移动通信基站往往在一个站址上同时有GSM、TD-SCDMA等多种标准的基站,越来越多地呈现多标准共存的局面,基站研发应当着眼于降低建设、运营维护和升级成本。对此,Gbps无线通信基站应当采用可重配置方式,在支持Gbps无线传输的同时能够兼容未来的LTE-A、IMT-Advanced标准,实现平滑演进。
  
从实现技术上看,实现信号处理算法并支持可重配置需要可编程的处理器件,现代基站系统广泛采用的可编程处理器以DSP和FPGA为主。尽管高端多核DSP的工作时钟频率已经提升到1.2GHz,在TD-SCDMA基站中得到广泛应用,但还是无法满足Gbps系统中同步、MIMO、LDPC等算法对信号处理复杂度和实时性的要求。因此,Gbps项目需要采用大容量的高性能FPGA来作为复杂算法的承载平台。
  
从基站系统的互连与数据传输机制上看,互连连接所有的无线接口、网络接口和计算资源,传输代表计算任务的数据,是使基站系统成为整体、协调运行的关键要素。由于MIMO算法需要多天线输入数据到多基带处理芯片的传输,应当采用以交换式互连网络和分组数据传输机制,更好满足未来基站系统中MIMO、并行处理、动态可重配置、计算资源动态调度等的需要。
  
综合以上设计实现考虑,经过综合调研考察,Gbps项目决定采用Xilinx公司Virtex-5系列FPGA构架硬件系统平台[4],承载复杂的信号处理算法,采用串行RapidIO[5]技术作为板间高性能互连,采用千兆以太网(GE)连接业务服务器及LMT计算机。
  
Virtex-5 FPGA介绍
  
Virtex-5系列FPGA是Xilinx 率先发布和量产的65nm 平台FPGA,目前包括LX、LXT、SXT、FXT及TXT等面向不同应用的多个子系列。
  
Virtex-5系列FPGA最高工作时钟可以达到550MHz,总逻辑单元数多达330,000个。提供了高达11.6 Mbit的灵活嵌入式Block RAM,能有效地存储和缓冲各种运算数据。多达 640个增强型嵌入式DSP48E slice块,可以满足高性能DSP算法加速的需要,实现352 GMACs的性能。Virtex-5 FXT系列FPGA提供多达两个标准的PowerPC 440处理器模块,每个处理器在550 MHz时钟频率下可提供1,100 DMIPS 的性能。利用PowerPC 440嵌入式处理器模块,可快速方便地实现Gbps基站中复杂的控制和通信协议处理。
  
Virtex-5系列FPGA集成100Mbps–6.5Gbps的高性能收发器,配合FPGA内部编程实现的串行RapidIO逻辑层模块可以实现芯片间和板间高性能的数据交换互连。集成符合IEEE 802.3标准的10/100/1000Mbps以太网MAC硬核,连接外部GE PHY或直接使用FPGA本身的GTP/GTX,就可以实现高性能的千兆以太网接口。

算法对资源的需求及FPGA型号的确定
  
分析Gbps算法链路中各算法的不同实现特点并对运算量以及使用的主要资源进行估计,可以确定所需要使用的FPGA。表1是资源需求估计与FPGA选择的结果,表2是目标FPGA内部资源情况的总结。

表1 Gbps无线通信基站系统算法链路对FPGA资源的需求



表 2 基站中使用的Virtex-5 FPGA资源及数量统计



其中,发送端的LDPC编码和接收端的LDPC译码,主要是逻辑运算,无需乘法器资源,因此采用Virtex-5中的LXT实现。同步、FFT/IFFT、调制/解调、空时译码等算法需要消耗大量的乘法器资源,采用集成大量DSP48E模块的SXT系列实现。MAC处理及网络接口采用FXT系列FPGA中的2个PowerPC440处理器以及内嵌的千兆以太网硬核实现。采用FPGA片内的PowerPC处理器,可以大大地降低外部电路设计的复杂度,降低物理层与MAC层间数据交换的复杂性,降低系统传输延迟,而且可以利用PowerPC处理器应用处理加速单元(APU)实现定制的指令,极大地提高MAC处理的效率。
  
基于Virtex-5 FPGA设计的Gbps无线通信基站

图2是设计完成的Gbps无线通信基站基带处理系统硬件实现框图。



图 2 Gbps无线通信基站基带处理系统硬件实现框图
  
根据算法需求分析的结果,Gbps基站系统最终以9片LX155T、17片SX95T、1片FX100T FPGA为中心构建。其中用4片SX95T实现8天线的接收同步/解帧/解时隙,每片FPGA处理2天线;用4片SX95T完成全部8天线的OFDM接收的IFFT及信道估计;用8片SX95T完成4发8收的MIMO空时译码处理,用8片LX155T完成解调、解交织及LDPC译码;FX100T中的PowerPC440处理器完成MAC层收发数据处理;1片LX155T完成发送的LDPC编码。所有FPGA均采用FF1136封装,由于Virtex-5 FPGA采用管脚兼容设计,SXT、LXT和FXT可以直接替换,降低了PCB设计的工作量,增加了系统应用的灵活性。
  
ADC使用TI公司的11bit的ADS62P15,DAC使用ADI公司AD9779A,ADC、DAC采样时钟及FPGA工作时钟频率为122.88MHz。
  
Gbps基站系统的互连设计如下:ADC与同步FPGA间采用差分LVDS连接;各组同步/解帧/解时隙与信道估计/IFFT的FPGA以及空时译码与LDPC译码FPGA之间直接采用48对差分LVDS连接;其余FPGA互连采用14端口Serial RapdIO交换机实现。Gbps基站系统的结构和接口整体采用高级电信计算架构(ATCA)和Serial RapidIO构建,模块化的结构和基于交换的互连使得系统可以方便地增加基带处理板卡的数量或扩展新的功能模块。
  
结论
  
LTE、IMT-Advanced等未来移动通信系统要支持大量的宽带用户和极高的空中接口速率,使用MIMO、OFDM、LDPC等复杂的通信信号处理算法,具有动态可重配置、计算资源动态调度能功能,对基站的计算处理和互连提出了极高的要求。以单平台多系列的Virtex-5系列FPGA为核心设计的Gpbs无线通信基站,采用基于交换的互连和分组的数据传输机制,可以验证各种未来无线通信所使用的算法与技术,实现Gbps的无线传输通信。
  
参考文献:
1. B. Johansson and T. Sundin, LTE Test bed, Ericsson Review, pp. 9-13,2007.
2. IMT-Advanced推进工作组,IMT-Advanced技术征集通函,2007
3. Ping Zhang, Xiaofeng Tao, Jianhua Zhang, et al. A Vision from the FuTURE: Beyond 3G TDD. IEEE Communications Magazine Vol.43, Issue 1,Jan 2005:38~44
4. DS100 Virtex-5 Family Overview,www.xilinx.com
5. Sam Fuller著,王勇等译. RapidIO 嵌入式系统互连[M ]. 北京:电子工业出版社, 2006

关键字:Virtex-5  通信  信号处理 引用地址:基于Virtex-5 FPGA设计Gbps无线通信基站

上一篇:如何利用可编程器件设计车用显示系统
下一篇:基于TMS320F28044数字电源设计

推荐阅读最新更新时间:2024-05-02 20:44

ABB工业机器人与西门子S-1200 PLC通信的实现
摘 要: 现代工业通常由多个设备共同完成生产任务,控制系统较为复杂,工业机器人作为其中的重要设备之一,在从事复杂工作时需要与PLC和视觉系统协作,这个过程中工业机器人与PLC的通信非常重要。现基于实际生产系统,研究ABB工业机器人与西门子S-1200 PLC通信的实现。 0 引言 在现代生产系统中,工业机器人与PLC需要通信协作完成生产任务 ,即工业机器人输出信号给PLC,让PLC控制相关设备驱动机器人前端工具工作。本文主要分析基于DeviceNet现场总线技术的ABB工业机器人与PLC通信的问题。DeviceNet是自动化领域常见的一种网络通信方式,ABB工业机器人基于DeviceNet网络建立与西门子PLC通信的网络。
[嵌入式]
ABB工业机器人与西门子S-1200 PLC<font color='red'>通信</font>的实现
stm32与伺服驱动器进行can通信
实验室师兄之前用stm32之间进行can通信,其中一个作为主机,另外作为从机,从机负责电机运转,并取出电机的速度,然后通过can通信发送给主机,然后主机通过串口与上位机进行通信。这一部分操作可以参照以下链接:https://www.ncnynl.com/archives/201703/1414.html 现在我们选择用伺服驱动器与一个stm32进行can通信,从而实现对电机的控制,目前我们实现的是对电机的速度输入,启动电机,(并进行速度反馈,进行OLED输出,从而进行电机的PID调节)。 首先我们选择了以下图示伺服驱动器,驱动器这块选择淘宝搜索可进行can通信的编码器应该可以找到类似产品 然后按照手册,我们将电机的编码器信
[单片机]
stm32与伺服驱动器进行can<font color='red'>通信</font>
如何设计可靠的电力线通信
电力线通信(PLC)是一种采用电力线作为通讯介质的通信技术。在与供电同一根电力线上传输数据,从而可以将房屋或汽车现有的电力基础设施用于传输数据,而不需要增新加电线。电力线通信技术正在经历快速增长的阶段,并找到了进入多个应用和市场领域的方式,包括智能电网、照明控制、太阳能面板监控、能量计量、家用视频分配、电动汽车等等。全球在提倡节能,这促进了让能源产生和能源消耗的设备互相通讯的需求。电力线通信提供了一个独特的无需新建设施的方法,使智能能量管理技术快速遍布世界各地。和无线解决方案不同,电力线通信不受视线和传输范围的限制。电力线通信对于很多应用来说也是一种低成本和易安装的技术。 今天,系统设计者能从超过十家半导体供应商买到电力线通信
[电源管理]
如何设计可靠的电力线<font color='red'>通信</font>
会议芯片M34116及其在专网通信中的应用
1 概述 在专用通信系统中,电话会议是不可缺少的功能,如部队的指挥调度、车站的站场调度、话务转接台的三方会议、会议录音等都会用会议功能。 目前,市场上出现的会议信号合成器处理专用集成电路芯片主要有Motorla公司的MC145611、Mitel公司的MT8924、SGS-汤姆逊公司的M34116。 M34116有以下主要技术特点: *可汇接1~64方会方式通话; *最多可达29组会议; *可在3种模式下同时工作,会议、透明传输和声音产生; *典型的比特率为1356/1544/2048/4096Kb/s; *兼容所有PCM帧格式; *A/μ律可选; *每一个通道为相同的优先级; *从发送到接收有一个帧又一个时隙的延时;
[嵌入式]
AVR串口通信程序RS232头文件
下面是ATMEGA128的头文件 /************************这是串口0******************************/ /*串口0的初始化*/ void Uart0_init(void) { UCSR0B = 0x00; //禁止发送和接收 UCSR0A = 0x02; //倍速异步模式USX0=1 UBRR0L=(Crystal/8/Baud0-1)%256; //根据数据手册的计算法 UBRR0H=(Crystal/8/Baud0-1)/256; //如果不是倍速则(Crystal/16/Baud0-1) UCSR0B=(1 RXEN0)|(1 TXEN0)|(1 RX
[单片机]
77GHz雷达信号处理流程框图及应用方案
可以肯定,车载毫米波市场将迎来一波快速的增长!原因很简单:车载毫米波雷达可以有效的提高汽车的主动安全性能,是实现ADAS和无人驾驶的终极目标必备之神器。 车载毫米波雷达通过阵列天线向外发射调制毫米波,然后将接收的回波信号和本地振荡混频提取中频信号,经后方MCU单元运行2-D傅里叶变换等处理提取汽车周与目标的相对速度、相对距离、相对角度,以及相对运动方向等信息。汽车中央处理单元会基于提取的信息进行智能处理,并给驾驶员警示信息,或者及时采取主动干预措施,从保证主动安全性能,减少事故几率。 世界各国汽车安全法规和评级将加速ADAS快速发展,从而带动车载毫米波雷达的旺盛需求。 图1,各国ADAS安全规范的发展进程(图片来源:中投
[汽车电子]
77GHz雷达<font color='red'>信号处理</font>流程框图及应用方案
基于DMR通信协议与数字对讲机基带模块设计
  引 言   随着嵌入式技术的发展,单片机、DSP、ARM等处理器已经广泛应用于通信行业,尤其是在无线通信领域更是有其不可替代的作用。本设计中所用的核心器件MSP430FG4619是TI公司推出的MCU,TMS320VC5510(简称“VC5510”)是TI公司的5000系列DSP,而语音编解码芯片AMBE一2000也是以DSP为内核的。   无线对讲机由于具有即时通信、经济实用、成本低廉、使用方便以及无需通信费等优点,因此广泛应用在民用、紧急事件处理等方面。尤其在紧急事件处理以及没有手机网络覆盖的情况,对讲机更加显示出它的不可取代的地位。如今,模拟对讲机仍然占据绝大部分的市场,但是由于数字通信可以提供更丰富的业务种类,更好的
[单片机]
基于DMR<font color='red'>通信</font>协议与数字对讲机基带模块设计
西门子S7-200PLC自由口通信要点
  应用自由口通信首先要把通信口定义为自由口模式,同时设置相应的通信波特率和上述通信格式。用户程序通过特殊存储器SMB30(对端口0)、SMB130(对端口1)控制通信口的工作模式。   CPU通信口工作在自由口模式时,通信口就不支持其他通信协议(比如PPI),此通信口不能再与编程软件Micro/WIN通信。CPU停止时,自由口不能工作,Micro/WIN就可以与CPU通信。   通信口的工作模式,是可以在运行过程中由用户程序重复定义的。   如果调试时需要在自由口模式与PPI模式之间切换,可以使用SM0.7的状态决定通信口的模式;而SM0.7的状态反映的是CPU运行状态开关的位置(在RUN时SM0.7=“1”,在ST
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved