AEMB软核处理器的SoC系统验证平台的构建

发布者:HarmonyInLife最新更新时间:2010-05-25 来源: Chinaaet关键字:FPGA  SoC  系统验证平台  AEMB  软核处理器 手机看文章 扫描二维码
随时随地手机看文章

  SoC芯片的规模一般远大于普通的ASIC,同时深亚微米工艺带来的设计困难等使得SoC设计的复杂度大大提高。仿真与验证是SoC设计流程中最复杂、最耗时的环节,约占整个芯片开发周期的50%~80%,采用先进的设计与仿真验证方法成为SoC设计成功的关键。一个简单可行的SoC验证平台,可以加快SoC系统的开发与验证过程。FPGA器件的主要开发供应商都针对自己的产品推出了SoC系统的开发验证平台,如基于Nios II微处理器的SOPC系统与基于MicroBlaze微处理器的SOPC系统等。它们功能强大,而且配有相应的开发环境与系统集成的IP核。但每个器件厂商的SOPC系统只适用于自己开发的器件,同时需要支付相应的使用费用且没有源代码,所以在学习以及普通设计开发验证中使用起来会有诸多的不便。

  本文采用OpenCores组织所发布的32位微处理器AEMB作为SoC系统的控制中心,通过Wishbone总线互联规范将OpenCores组织发布维护的相关IP核集成在目标SoC系统上,构成了最终的SoC验证平台。

  1  AEMB及Wishbone总线介绍

  AEMB是一款高效的开源微处理器软核,在指令上与Xilinx公司针对其器件开发的Microblaze微处理器兼容,而且在结构上还有所增强。它主要有以下特点:

  ①软核设计得非常小,相对于其他的一些微处理器软核,在物理实现上占用较少的硬件逻辑资源;

  ②支持硬件上的多线程,可以有效地执行操作系统相关的代码;

  ③AEMB是在LGPL3下开发的,所以它完全可以作为一个部分嵌入到一个大的设计中,同时非常适合一些科研院所以及高校或者个人用来学习;

  ④支持Wishbone总线规范,可以非常容易地集成其他的一些支持Wishbone总线规范的开源IP核;

  ⑤完全通过一些参数来定义系统的可配置功能,如系统的地址空间和一些其他可选的功能单元;

  ⑥在指令上99%与EDK6.2兼容,可以方便地使用已经非常成熟的开发工具链。

  Wishbone总线规范是一种片上系统IP核互连体系结构。它定义了一种IP核之间公共的逻辑接口,减轻了系统组件集成的难度,提高了系统组件的可重用性、可靠性和可移植性,加快了产品市场化的速度。Wishbone总线规范可用于软核、固核和硬核,对开发工具和目标硬件没有特殊要求,并且几乎兼容目前存在的所有综合工具,可以用多种硬件描述语言来实现。Wishbone总线提供了4种不同的IP核互连方式:

  ◆点到点(point-to-point),用于两IP核直接互连;

  ◆数据流(data flow),用于多个串行IP核之间的数据并发传输;

  ◆共享总线(shared bus),多个IP核共享一条总线;

  ◆交叉开关(crossbar switch),同时连接多个主从部件,可提高系统吞吐量。[page]

  2 SoC系统验证平台总体框架

  SoC系统中主要包含的IP模块有:32位开源微处理器软核AEMB、中断控制器、时钟定时器、Wishbone总线、片上RAM控制器、SDRAM控制器、SSRAM控制器、Flash控制器、UART16550控制器、GPIO控制器。整个SoC系统的总体结构如图1所示。

SoC系统总体结构

  图1 SoC系统总体结构

  为了方便后续开发与应用,本SoC系统中的Wishbone总线仲裁采用了开源的IP软核wb_conmax。其为8×16的结构,即在该Wishbone总线模块中可以使用8个主设备与16个从设备。本系统中使用了8个从设备接口和2个主设备接口。AEMB软核中没有提供时钟定时器与中断控制器,为了正常使用该软核,本系统中加入了中断控制器和时钟定时器,这两个控制器是作为从设备添加进来的。针对一些对存储空间需求很少的应用,系统将片上RAM作为主存储器。然而,FPGA片上存储器的空间是非常有限的,为了能够运行需要大量存储空间的操作系统,以及让系统正常上电启动,就需要外部存储器作为系统的主存储器。所以,系统中还添加了SDRAM、SSRAM控制器及Flash存储器。UART16550控制器和GPIO控制器作为2个从设备连接在系统中。

  3 SoC系统验证平台具体构建

  3.1  AEMB版本的选择与配置

  AEMB软核采用最新的EDK62版本。本设计的目的在于整个SoC系统验证平台的构建,对微处理器性能及整个SoC系统的具体应用性能没有要求。为了简化设计,将AEMB软核中可配置的一些优化选项全部禁掉。这样不仅省去了对FPGA硬件逻辑资源的占用,而且也避免了因一些具体细节使用不当而带来的诸多问题。

  3.2  片上RAM的生成

  为了减少对FPGA逻辑资源的占用,同时又能够满足最基本的启动代码的存放与运行,将片内存储器的大小设为4 KB。使用Altera公司的FPGA开发环境QuartusII 9.0中的MegaWizard Plug-In Manager工具,来生成设定大小为4 KB的片上RAM。EDA开发工具生成的片上存储文件仅是具有相关存储器地址、数据及读写控制信号的一个HDL描述文件。为了能够在本SoC系统中使用,需要将其包装成符合Wishbone总线接口的一个从设备,以挂接在系统的Wishbone总线上。

  3.3  片外存储控制器的配置

  在该SoC系统上,片外存储控制器主要有SDRAM、Flash、SSRAM控制器。根据台湾友晶公司的DE2-70开发板上实际存储芯片的需要,对控制器的数据总线宽度与地址总线宽度作相应的修改与定制。一般情况下,SDRAM作为系统的主存储器,Flash用来存储系统的一些固化程序。在对一些实时系统进行时间参数测量的过程中,为了减小程序运行空间中时序的不稳定性影响,一般情况下测试程序都是在SSRAM器件中运行的。

  作为存储器件的物理芯片,数据总线的端口基本上都是双向的,而在片内系统中数据端口基本上都是单向的。这些片外存储控制器在进行物理板级的连接时需要对相应的数据端口作处理。以Flash控制器为例,数据总线的双向I/O口具体实现RTL代码如下:

  其他的存储器(如SDRAM、SSRAM)的数据总线双向I/O的实现,也都是采用这种方法来完成的。

  3.4  中断控制器与时钟定时器的配置

  中断控制器主要用于接收外部中断源的中断请求,并对中断请求进行处理后再向CPU发出中断请求,等待CPU响应中断并进行处理。在CPU响应中断的过程中,中断控制器仍然负责管理外部中断源的中断请求,从而实现中断的嵌套与禁止。在本设计中,中断控制器的逻辑结构如图2所示。所采用的中断控制器主要负责接收片内IP核及片外器件所发出的中断请求,然后根据一定的优先级与规则将中断发送给微处理器。微处理器可以通过设置与读取相应的中断寄存器来管理查看中断优先级与中断状态。

 终端控制器逻辑结构

  图2 终端控制器逻辑结构

  时钟定时器主要是作为操作系统的时钟滴答定时器,本质上就是一个简单的计数器。在每个系统时钟来到时计数器会自动加1,当计数器的值达到设定数值时便产生1次时钟中断。PTC是OpenCores组织发布的一个支持Wishbone总线接口的脉冲定时计数器。其不仅可以作为时钟定时器,还可以通过配置寄存器的设置产生PWM脉冲输出。本SoC系统中主要是使用PTC的定时器功能。[page]

  3.5  地址空间的分配

  根据DE2-70开发板上各器件的特点与AEMB微处理器的中断例外向量表及wb_conmax的逻辑实现,系统地址空间分配结果为:

  4  SoC系统的FPGA综合实现

  针对DE2-70开发板在进行SoC系统的FPGA综合时选用CycloneII系列器件EP2C70F896C6。系统时钟频率预设为50 MHz,不加额外约束条件下进行综合,综合后的逻辑资源占用报告如图3所示。

SOC系统FPGA综合后逻辑资源使用情况

  图3  SOC系统FPGA综合后逻辑资源使用情况

  通过时序分析报告可知,该SoC系统在满足时序的前提下,系统实际运行频率可达到65.31 MHz。

  5 SoC系统验证平台软件支持

  考虑到SoC验证平台所包含的硬件部件与该平台的具体应用,系统软件主要构成如图4所示。Mini Bootloader负责应用程序从Flash器件向程序运行空间的加载。在DE2-70开发板上,借助于NiosII开发工具与开发板自带的基于NiosII的SOPC硬件系统,烧写Flash很方便。系统启动时可以从Flash开始启动,完成应用程序的拷贝后再跳转到主程序运行的存储器空间。在本系统中,为了使编程更加方便,将拷贝程序放在片上RAM中存储。系统从片上RAM开始启动,完成应用程从Flash到SDRAM的拷贝之后,跳转到SDRAM开始执行应用程序。

  图4 SoC系统软件支持

  AEMB微处理器在指令上与MicroBlaze达到99%的兼容,而后者的应用程序及操作系统的开发已经有非常成熟的范例。操作系统的移植主要是完成对硬件地址空间的修改与操作系统一些底层初始化代码的编写。最终在该SoC系统验证平台上完成了μC/OS-II的移植工作。

  结  语

  本文基于32位微处理器AEMB设计了一款SoC系统验证平台,给出了SoC系统经过FPGA综合后的逻辑资源占用情况,以及系统能够运行的最高时钟频率。该平台已在台湾友晶公司的DE2-70开发板上完成了FPGA验证。

关键字:FPGA  SoC  系统验证平台  AEMB  软核处理器 引用地址:AEMB软核处理器的SoC系统验证平台的构建

上一篇:基于FPGA的RS485接口误码测试仪的设计
下一篇:基于ADV7183B的视频解码系统的设计

推荐阅读最新更新时间:2024-05-02 21:03

数字频率合成器的FPGA实现
摘要:介绍了DDFS的原理和Altera公司的FPGA器件ACEX 1K的主要特点,给出了用ACEX 1K系列器件EP1K10TC144-1实现数字频率合成器的工作原理、设计思路、电路结构和仿真结果。 关键词:DDFS;FPGA;快速通道互连;仿真 1 概述 1971年,美国学者J.Tierncy,C.M.Rader和B.Gold提出了以全数字技术,从相位概念出发直接合成所需波形的一种新的频率合成方法。限于当时的技术和器件水平,它的性能指标尚不能与已有技术相比,故未受到重视。近30年间,随着集成电路技术和器件水平的提高,一种新的频率合成技术——直接数字频率合成(DDFS)得到了飞速的发展,它以有别于其它频率合成方法的优越性
[应用]
关于IP核在SoC设计中的接口技术
  引言   随着半导体技术的发展,深亚微米工艺加工技术允许开发上百万门级的单芯片,已能够将系统级设计集成到单个芯片中即实现片上系统SoC。IP核的复用是SoC设计的关键,但困难在于缺乏IP核与系统的接口标准,因此,开发统一的IP核接口标准对提高IP核的复用意义重大。本文简单介绍IP核概念,然后从接口标准的角度讨论在SoC设计中提高IP核的复用度,从而简化系统设计和验证的方法,主要讨论OCP(开放核协议)。   OCP简介   基于IP核复用技术的SoC设计使芯片的设计从以硬件为中心转向以软件为中心,芯片设计不再是门级的设计,而是IP核和接口及其复用设计。IP核集成到系统所要考虑的问题包括:同步,例如全局执行、数据交换和协
[嵌入式]
采用ARM的电子系统设计
一、引言 作为SOC(System On Chip)的典型应用,和持电话、机顶盒、数码像机、GPS、个为数字助理以及因特网设备等产品的市场需求越来越大。目前,基于arm的处理器以其高速度、低功耗等诸多优异的性能而成为上述各类产品中选用较多的处理器。 二、arm内核 ARM内核分为ARM7、ARM9、ARM10以及Strongarm等几类。其中每一类又根据其各自包含的功能模块而分成多种构成 在arm内核中有四个功能模块可供生产厂商根据不同用户的不同要求来配置生产。这四个模块分别用T、D、M和I来表示。 T:表示Thumb,该内核可从16位指令集扩充到32位arm指令集。 D:表示Debug,该内核中放置了用于
[单片机]
联发科2021年Q4智能手机SoC市场第一 华为海思跌到1%
2月24日,Counterpoint 最新研究显示,2021 年第四季度全球智能手机 AP / SoC 芯片组出货量同比增长 5% ,其中,5G 智能手机 SoC 出货量几乎占 SoC 总出货量的一半。   研究显示,联发科在 2021 年第四季度以 33% 的份额引领智能手机 SoC 市场,由于上半年出货量高以及中国智能手机厂商的库存调整,其智能手机 SoC 销量本季度有所下降。   高通以 30% 的市场份额排名第二,环比增长 18%,高端市场和来自代工厂的双重采购助推了高通的份额增长。同时,在苹果和高端安卓手机基带需求的驱动下,高通以 76% 的份额主导 5G 调制解调器市场。   iPhone 13 的发布以
[手机便携]
Teledyne e2v高速数据转换平台可与Xilinx最新FPGA器件完美相融
为了辅助Xilinx热门产品20nm Kintex UltraScale KU060 FPGA,Teledyne-e2v现在可提供高度优化的多通道模数转换器(ADC)和数模转换器(DAC)解决方案。它们有各种不同等级类别可供选择,最高级别是高可靠性耐辐射的宇航级,适用于卫星通信、地球观测、导航和科学任务。 每个新的数据转换器都可以通过其集成的ESIstream高速串行接口协议和与其相对应的FPGA进行交互操作,该协议已针对KU060系列进行了修改。在支持12.5Gbps数据速率的情况下,ESIstream在提高数据效率和缩短串行链路延迟水平方面提供了业界领先的操作参数。另外,它支持多个通道和多个设备的同步。 尽管ESIst
[嵌入式]
Abaco推出VP831板卡,采用Zynq Ultrascale+
Abaco Systems日前推出下一代FPGA板卡VP831,这是3U VPX FPGA板卡,具有100G以太网,其设计符合传感器开放系统架构(SOSA)技术标准。以更低的功率和尺寸提供了更大的带宽和增强的处理能力,可以在最恶劣的环境中执行。 通过对包括Zynq Ultrascale+片上系统中的嵌入式Arm内核在内的基础技术的升级,可降低功耗,尺寸和成本,并实现先进的安全性。VP831专为在最恶劣的环境中运行而设计。它带有功能齐全的开放式支持包,可为客户提供高级参考设计示例,以简化专用IP集成并降低集成的风险。通过遵守行业标准,用户可以升级他们的系统,而无需重新设计完整的系统,包括市场上尚未提供的未来技术。 作为VP
[嵌入式]
Abaco推出VP831板卡,采用Zynq Ultrascale+
以硬件为中心的设计方案构建高可靠性医疗电子设备
  几乎每个使用手机的人都会有过几次通话中断的经历。虽然这些产品以及其他消费类产品的系统故障或者小毛病会带来不方便,但它们不会造成灾难性的后果。然而,医疗电子设备的一次系统故障就会带来生命威胁,这也是为什么医疗设备,以及这些系统中集成的器件和这些器件中运行的软件必须通过严格测试,并符合美国食品药品监督管理局(FDA)的严格要求。   为确保我们的新设计能够发挥理想可靠的性能,顺利通过FDA的审批流程,我们采用了一种称为“Scrum/Sprint开发流程”的高度结构化的设计方法。此外,通过减少在软件中实施的功能,还能够降低软件出错的几率。我们已在赛灵思的FPGA中实施了这些功能。为了能够更充分地理解这种方法,我们首先来分析一下医疗
[医疗电子]
以硬件为中心的设计方案构建高可靠性医疗电子设备
瑞苏盈科出席欧洲FPGA大会并发表演讲
FPGA Conference Europe 是欧洲领先的可编程逻辑器件专家会议 。在越来越受人工智能驱动的云数据中心、电信和许多其他高性能应用中,现场可编程门阵列(简称 FPGA)早已证明自己是适用于各种任务的灵活且强大的加速器解决方案。 2022年欧洲 FPGA 大会,于 7 月 5 日至 7 日在德国慕尼黑东会议中心举办,3天100%专业知识!75个来自全球顶级专家演讲。讨论嵌入式系统的开发人员必须处理新的解决方案和方法,但同时也要澄清基本问题:FPGA 是否适合他们自己的项目?使用 FPGA 的最佳方式是什么?瑞苏盈科作为参展商出席了此次会议并发表演讲! 欧洲FPGA大会现场 来自Enclustra的演讲者
[嵌入式]
瑞苏盈科出席欧洲<font color='red'>FPGA</font>大会并发表演讲
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved