基于FPGA的数字视频转换接口的设计与实现

发布者:HarmonyInLife最新更新时间:2010-08-02 来源: 电子产品世界关键字:FPGA  视频转换接口 手机看文章 扫描二维码
随时随地手机看文章

  引言

  本文从实际应用的角度出发,采用FPGA作为主控芯片,设计了一款数字视频接口转换设备,该设备针对于MT9M111这款数字图像传感器产生的ITU-R BT.656格式数据进行采集、色彩空间变换、分辨率转换等操作,完成了从ITU-R BT.656格式数据到DVI格式数据的转换,使得MT9M111数字图像传感器的BT656数据格式图像能够以1280×960(60Hz)和1280×1024(60Hz)两种显示格式在DVI-I接口的显示器上显示,并且还具有图像静止功能,在系统空闲时的待机状态实现了整机的低功耗,适用于使用移动设备的工业现场。

  整体方案设计

  现实景物的采集与显示过程如图1所示。图像传感器MT9M111采集到现实景物后,将生成的ITU-R BT.656数据流由ITU数据输出端口发送给视频转换接口。视频转换接口将ITU数据输入端口送来的ITU-R BT.656数据流转换成TMDS数据流发送,通过DVI-I端口发送给显示终端显示。本设计方案中,MT9M111输出图像的分辨率为1280×960。

系统采集与显示过程

  图1 系统采集与显示过程

  在现实景物的采集与显示过程中,视频转换接口功能的实现通过以下步骤来完成:

  1) 对收到的ITU-R BT.ITU656数据流解交织;

  2) 对解交织后的数据流进行色彩空间转换;

  3) 将转换后的每个像素的RGB值写入存储器中;

  4) 从存储器中读出像素的RGB值,并将其转换成TMDS码元序列;

  5) 从存储器中读出像素的RGB值,并将其转换成VGA模拟信号值。 [page]

  硬件构架设计

  系统的硬件构架框图如图2所示。图像传感器输出的ITU信号(包括YCbCr数据流、行场同步信号和像素时钟)经ITU输入接口送入FPGA主控芯片。FPGA主控芯片对ITU信号进行解交织和色彩空间转换,再将转换后的每个像素的RGB值写入SDRAM存储器。再由FPGA主控芯片按照输出分辨率的要求从SDRAM存储器中读出像素的RGB值,并按照VGA的时序标准,将像素的RGB值发送给TMDS发送芯片和D/A芯片,由TMDS发送芯片提供视频数据的数字通道,由D/A芯片提供视频数据的模拟通道,共同汇集到DVI-I输出接口,传送到数字显示器或模拟显示器上显示。

硬件构架框图

  图2 硬件构架框图

  输出图像的分辨率要求FPGA与TMDS发送芯片之间传送数据的带宽在100M(像素/秒)以上,因此要求FPGA的速度足够快。同时由于FPGA与外围器件之间的互联比较多,因此要求FPGA的引脚数足够多。同时由于晶振提供的时钟频率为50MHz,满足不了100M以上的传输速度,因此需要FPGA内部带有锁相环。另外,为了实现系统脱机工作,要求FPGA支持配置芯片。最后,考虑到系统占用的面积和以后版本的升级,要求FPGA的内部资源尽量丰富。为此,系统最终选用了Altera公司Cyclone系列FPGA。

  考虑到视频数据的存储和显示是同时进行的,而SDRAM存储器是单端口器件,数据的写入和读出不能同时进行,故需要两块SDRAM同时进行乒乓操作来完成数据的连续读写。最终选用了Micron公司的型号为MT48LC2M32B2TG-6的SDRAM存储器;TMDS发送芯片选用的是Silicon Image公司的SiI164CT64型号。由于输出图像的分辨率要求FPGA与TMDS发送芯片之间传送数据的带宽在100M以上,这一数据流同时又要送入D/A芯片完成数模转换,因此要求D/A芯片的转换速率在100MHz以上。同时由于R、G、B的数据宽度都为8位,因此需要选用专用的图像D/A芯片,它需要具有R、G、B三路数据通道,每路的宽度至少为8位。根据以上要求,系统最终选定CSEMIC公司的CSV7123型号的图像D/A芯片。

  FPGA功能设计

  FPGA作为系统的主控芯片,是软件设计的核心。根据整体方案的设计思路,FPGA主控芯片的工作过程为:首先接收由图像传感器送来的ITU-R BT.656格式的视频数据流,经过解交织操作,将像素数据流中交织在一起的串行YCbCr值解成独立的并行YCbCr值。然后对解交织的YCbCr值进行色彩空间转换,转换成对应的RGB值。接着将此RGB值存入一块SDRAM存储器。与此同时,从另一块SDRAM存储器中读出像素的RGB值,并发送给TMDS发送芯片和D/A芯片,经过数字通道和模拟通道后,传送到DVI显示器或VGA显示器上显示。根据FPGA主控芯片的工作过程,设计的软件功能框图如图3所示。

 软件功能框图

  图3 软件功能框图

  图3中FPGA内部的工作时钟有两个,以图中的虚线为界,虚线左侧部分使用的时钟为图像传感器的54MHz像素时钟;虚线右侧使用的时钟是经过锁相环将晶振的50MHz时钟倍频成108MHz以后的时钟,其中108MHz的时钟是由输出图像的分辨率所决定的。两个时钟域通过异步FIFO相连。整个系统共分成6个模块:解交织模块、YCbCr转RGB模块、异步FIFO模块、乒乓操作模块、SDRAM控制器模块和VGA发送模块。此外,系统还可实现图像静止、系统待机、模式选择等功能。 [page]

  图像显示效果

  图4是输出图像分辨率为1280×960模式下的显示效果,图中显示器检测到的视频图像分辨率为1280×960

1280×960模式下的显示效果



图4 1280×960模式下的显示效果

关键字:FPGA  视频转换接口 引用地址:基于FPGA的数字视频转换接口的设计与实现

上一篇:基于FPGA的按键弹跳消除模块的研究与应用
下一篇:基于PM3388和FPGA的网络接口的研究设计

推荐阅读最新更新时间:2024-05-02 21:06

保持路线图更新,Lattice推出mVsion 2.0与Sentry 2.0
在SensAI在边缘人工智能取得了市场广泛认可之后,2020年Lattice(莱迪思半导体)一鼓作气,持续在软件上进行投资,包括SensAI 3.0,面向机器视觉的mVision 1.0以及面向安全应用的Sentry 1.0,以及开发环境Lattice Propel。 正如Lattice CEO Jim Anderson在2020年四季度财报分析师电话会上所说,“我们除了持续开发新品之外,在研发领域另一个关键要素是开发广泛的软件解决方案组合,以使客户可以快速、轻松地将Lattice的产品放到他们的系统中运行,并迅速推向市场。” “客户可将解决方案堆栈用作一种预先构建的,随时可用的软件库,工具和参考平台。”Jim说道。“我们
[嵌入式]
保持路线图更新,Lattice推出mVsion 2.0与Sentry 2.0
基于FPGA脑机接口实时系统
脑机接口BCI(Brain Computer Interface)是一种新颖的人机接口方式。它的定义是:不依赖于脑的正常输出通路(外周神经系统及肌肉组织)的脑-机(计算机或其他装置)通讯系统 。要实现脑机接口,必须有一种能反映人脑不同状态的信号,并且能够实时或短时对这种信号进行提取和分类 。瞬态视觉诱发电位与刺激之间具有严格的锁时同步关系,能比较准确地检测,而且它所需的视觉刺激频率比较低,不容易引起视觉疲劳。因此本研究采用瞬态视觉诱发电位来实现脑机接口。 脑机接口系统是由人和机器构成的闭环系统 。除人本身外, 脑机接口系统包括:信号采集、信号处理、外部设备及控制部分。本文的方案采用FPGA取代计算机,作为脑机接口的控制和信息处
[工业控制]
基于<font color='red'>FPGA</font>脑机<font color='red'>接口</font>实时系统
基于FPGA的车道偏离预警系统的设计
摘要: 介绍了一种以FPGA芯片为核心,基于数字图像处理技术和SOPC技术的车道偏离预警系统实现方案。系统通过CCD摄像头完成车辆前方图像的采集,利用Hough变换实现车道检测,利用边缘检测函数完成偏离预警的功能。系统具有良好的便携性、灵活性和通用性。详细的论述了该系统硬件结构和软件设计思想,并分析了系统具有的优点。 关键词: 车道偏离;车道检测;Hough变换;SoPC;FPGA; 0 引言 随着我国国民经济的发展,汽车拥有量剧增,同时公路建设事业的迅速发展,造成目前公路交通呈现行驶高速化、车流密集化和驾驶员非职业化的趋势,由汽车碰撞引起的交通事故危害着人民的生命财产安全。根据美国国家公路交通安全管理局(NHTSA)
[嵌入式]
基于<font color='red'>FPGA</font>的车道偏离预警系统的设计
基于51内核和FPGA器件实现便携式幅频特性测试仪的应用方案
在现代电力电子系统中,随着内场测试和外场维护工作量的增加,对目前通用的测试仪器也提出了新的要求,研制低成本、体积小的便携式幅频特性测试仪具有深远的现实意义。目前,结合新型微处理器芯片进行幅频特性测试仪的研制主要有三种技术途径:(1)采用单片机作为主控芯片,通过软件编程方式实现部分硬件功能,这种方案可以有效降低系统的复杂度,但在实时性上不尽人意。(2)应用可编程逻辑器件(如FPGA)进行设计可以有效解决高速数据流的实时处理问题,但在人机界面的设计中具有较大困难。(3)采用单片机与FPGA芯片结合的方式,通过外部总线连接和数据传输协议的设计,使得系统兼具两者的优势,从而成为设计人员首选的主流方案。 现代EDA(Electronic
[测试测量]
基于51内核和<font color='red'>FPGA</font>器件实现便携式幅频特性测试仪的应用方案
PolarFire FPGA中可提供基于SRAM PUF的先进安全功能
致力于在功耗、安全、可靠性和性能方面提供差异化半导体技术方案的领先供应商美高森美公司(Microsemi Corporation,纽约纳斯达克交易所代号:MSCC)与面向物联网(IoT)和嵌入式应用的数字认证技术全球领先供应商Intrinsic ID宣布,美高森美的新型PolarFire™可编程逻辑器件(FPGA)已带有Intrinsic ID的静态随机存取存储器(SRAM)物理不可克隆功能(SRAMPUF)。QUIDDIKEY®-FLEX是尖端的高安全性密钥生成和存储机制,可提供基于SRAM PUF的先进安全功能。 SRAM PUF硬件是美高森美PolarFire FPGA的安全性的主要元素,可通过提供IP保密和防止克隆及逆
[嵌入式]
基于DSPBuilder的FIR滤波器的方案实现
   1.引言   在信息信号处理过程中,如对信号的过滤、检测、预测等,都要使用滤波器,数字滤波器是数字信号处理(DSP,DigitalSignalProcessing)中使用最广泛的一种器件。常用的滤波器有无限长单位脉冲响应(ⅡR)滤波器和有限长单位脉冲响应(FIR)滤波器两种 ,其中,FIR滤波器能提供理想的线性相位响应,在整个频带上获得常数群时延从而得到零失真输出信号,同时它可以采用十分简单的算法实现,这两个优点使FIR滤波器成为明智的设计工程师的首选,在采用VHDL或VerilogHDL等硬件描述语言设计数字滤波器时,由于程序的编写往往不能达到良好优化而使滤波器性能表现一般。而采用调试好的IPCore需要向Altera公
[嵌入式]
FPGA搭载3D电视风潮 Xilinx可大显身手
3D电视无疑是2010年国际消费性电子展(CES)中引发最多讨论的话题之一。但在市场尚未起飞之前,由于晶片供应商必须审慎评估市场风险,因此不管是标准产品或客制化解决方案的选择均相当有限,从而让现场可编程闸阵列(FPGA)元件得以在这片蓝海市场中大展身手。   赛灵思(Xilinx)亚太区销售与市场副总裁杨飞指出,从本届CES中各大品牌制造商的展出内容来看,3D电视的市场热度无庸置疑,但由于3D电视市场还在初期阶段,因此目前半导体供应商对3D电视解决方案的投入多半不深,有些甚至还抱持观望态度。杨飞认为,每项新技术在发展初期都是如此,3D电视也不例外。而这段标准或客制化方案尚未百家争鸣的过渡期,正是可编程逻辑元件(PLD)大显
[嵌入式]
4DSP推出的FM480是基于Virtex-4 FPGA的PCI夹层卡
4DSP的PMC扩展卡可加速信号处理算法 4DSP公司日前推出的FM480是一款基于Virtex-4 FPGA的PCI夹层卡(PMC)。FM480已通过几种现场测试,所开发的首个应用是一个基于IEEE-754标准浮点FFT内核的2维快速傅立叶变换。 FM480 PMC可选传导散热方式,配有大容量的SRAM和DRAM资源以及超高速DMA引擎,因而适于作为协处理器单元以满足信号处理算法的需求。该卡还提供了几个前面板I/O模块,可实现相机、前端面板数据端口以及ADC连接。 FM480目前已向几个主要用户提供了样件,已开发的项目包括在Virtex-4 FPGA中实现的实时JPEG2000压缩。有关该产品的价格目前尚未公布。
[新品]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved