SoC处理单元性能评估及功能划分

发布者:黄金大花猫最新更新时间:2011-05-27 来源: 嵌入式技术网关键字:SoC  RISC  DSP  FPGA  功能划分  性能评估 手机看文章 扫描二维码
随时随地手机看文章

  有多个处理单元的SoC器件目前是产品设计链上的重要一环。本文综合各种因素评估了不同处理单元的优缺点,并通过卫星无线电接收器的设计实例帮助开发人员理解SoC所涉及处理任务之间的复杂平衡并有效掌握系统功能的划分。

  在准备开发目前越来越复杂的便携式系统时,设计人员面对的最大挑战之一就是采用什么样的处理器组合来实现最优化的“3P”指标,即系统性能最高、价格最低及功耗最小。系统级芯片(SoC)集成使得今日的创新成为可能,但它常常涉及把不同的处理器单元结合在单一的器件之上。这些单元可以包括可编程功能,如通用微处理器(通常是RISC)、DSP、FPGA和加速器,而且还可能有固定功能的加速器。由于这些单元都可以专用器件形式获得,因此对设计人员来说,在它们之中进行全面的性能评估,进而决定以最有效的方式组合使用它们,有可能是一项相当困难的工作。

  处理单元的优缺点分析

  在实现多内核处理器之前,在RISC和DSP之间进行挑选曾相对较为简单。如果大量的系统处理工作和数据有关,那么采用RISC,即使信号处理会受些损失。如果大量的处理工作和信号有关,那么采用DSP,并力争获得差强人意的控制和

数据处理性能。但对多内核集成而言,考虑到要添加其它处理单元,这类选择变得非常复杂。正确的答案不完全是技术性的,而是要基于优化灵活性、便于使用、成本、功耗和性能多方面来考虑。

  各种处理单元的基本优点和缺点概括在表1之中。通用RISC处理器专为数据处理而优化,很容易使用而且很灵活,其成本、功耗和性能都可接受。DSP为实时信号而优化,它们处理实时信号所需的功耗和成本通常比RISC低,不过,它们常常更难使用。

  可编程加速器或半可编程处理器可设计用来数据或信号处理。一个例子就是用于通信系统的Viterbi处理器,对Viterbi编码或解码来说它是完全可编程的,但对任何其它功能来说毫无用处。就其功能而言,一个可编程加速器的成本、功耗总是比RISC或DSP要低,而性能要高,但从本质上讲,它稍欠灵活、更难使用,而且对缺陷(bug)的容忍度低,不容易更改。

处理器单元优缺点对比  

表1处理器单元优缺点对比

  用于数据或信号处理的固定功能加速器(一般为ASIC)只能完成一种特定的功能。固定功能加速器总是一种成本最低、功耗最低、性能最高的解决方案,但它们缺少任何程度的灵活性。一旦ASIC设计出来并调试通过,到了系统开发人员手里,它会变得非常易用。但是其设计和调试与可编程器件相比非常困难,而且以后不可能进行再编程。

  划分系统处理功能

  尽管在各种处理单元之中做决定是一件复杂的工作,但有一个可行的选择程序,就是把各种系统功能划分到各种处理单元之中。把一个系统的处理需求映射到一个现有的多内核SoC之中,与通过映射处理需求创建一个新多内核SoC有所不同。然而,其过程是类似的。

  为了把该系统映射到一个现有的SoC之中,系统设计人员必须确定该系统方案以及它所针对市场的几个细节。在这当中包括产品特性和算法组件,以及添加特性和解决bug的策略,不管是在设计期间还是在整个产品寿命期内。一旦这些细节确定,系统功能必须确定成信号或数据处理任务,随后再分成三个性质不同的类。

  明确并将保持不变的功能:这些功能包括离散余弦变换(DCT)或快速傅立叶变换(FFT),它们将不会再有任何变化,而且已问世足够长的时间,因此所有bug都已消除。这些功能使用固定功能加速器或最优化。[page]

  明确但会有一定变化的功能:这些功能有一定程度的灵活性。例如,尽管单一的FFT可以由一个ASIC来处理,但将多个相关的FFT重新组合成一系列实现方案的能力会需要一种可编程的加速器。

  不确定且可变化的新功能:满足这些需求的处理器单元是可编程的RISC、DSP和FPGA。虽然设计人员也许不知道这些不确定或新特性是什么,但有必要测度应对预计需求所需的大致性能和存储器。

  当系统功能已经被分解成这三大类别时,系统可以映射到一个现有的SoC器件。整个程序分成以下步骤:

  1.确定最终系统完整的特性和功能清单。如果可能的话,包括对新特性和功能的估计,它们可以在采用该SoC产品的寿命期内随时加入。

  2.把该特性和功能清单分成数据处理部分和信号处理部分。

  3.把每个清单(数据和信号)中的功能分成三类:a.在产品的寿命期内明确并将保持不变的功能;b.在产品的寿命期内明确但允许某些变化的功能;c.不确定且可变化的新功能。

  4.估计每个清单中每项所需的性能。

  5.估计每个清单中每项所需的存储器。

  6.分配:a.适当的明确功能给可行的固定功能加速器;b.其余的明确功能给可行的可编程加速器;c.不确定且可变化的新功能给适当的可编程器件(RISC用于数据处理,DSP用于信号处理)。

  最后一步的目标是尽可能多地利用加速器,并把灵活性和裕度留给可编程单元处理。显然,对明确的、可有一些变化的和不确定功能的分配在一定程度上取决于相关SoC能提供什么硬件。把一个系统映射到一个新的SoC,而不是一个现有的SoC,有可能会引起较长的产品规划时间,所以该设计人员必须解决的问题将经常和一系列基于该新器件的产品有关。设计人员需要确定哪些算法组件更好理解,没有缺陷也不需要改变;还需要确定在整个设计期间或产品系列中,系统的哪些部分有可能改变。在涉及到功能分配(步骤6)时,一个新方案的设计人员可以非常肯定地将明确功能(步骤3的a)分配给固定功能单元,可有些变化的功能(步骤3的b)分配给可编程加速器,把不确定的、变化的新功能(步骤3的c分配给处理数据的RISC和处理信号的DSP)。

关键字:SoC  RISC  DSP  FPGA  功能划分  性能评估 引用地址:SoC处理单元性能评估及功能划分

上一篇:转换开关添加了可编程PWM占空比钳位
下一篇:交换位技术改进FPGA-PWM计数器性能

推荐阅读最新更新时间:2024-05-02 21:24

基于DSP的双通道数字存储示波器
  1.引言   数字存储示波器有别于一般的模拟示波器,它是将采集到的模拟电压信号转换为数字信号,由内部的微处理器进行分析、处理、存储、显示或打印等操作。这类示波器通常具有程控和遥控能力,通过GPIO接口还可将数据传输到计算机等外部设备进行分析处理。随着大规模集成电路的不断发展,功能强大的DSP数字信号处理器的实时性越来越强。DSP凭借其强大的数字信号处理能力,为数字示波器的数据采集系统的实现提供了一个可靠而又实用的平台,并且提高了数字存储示波器的采样速率、存储深度、波形捕获能力等指标。   本文描述的数字存储示波卡是一种基于DSP的双通道数字存储示波器。该示波器采用的是TI公司的 TMS320F2812芯片,它具有高速的数字信号
[测试测量]
基于<font color='red'>DSP</font>的双通道数字存储示波器
只谈核数没意义 带你重新认识手机SoC
   你的手机是几核的?在比较两款手机区别时,这是我们最常问的一个问题。CPU核心数量的多寡的确是衡量手机性能的重要指标,但却不是最准确的指标。   以市面上最常见的高通骁龙处理器为例,在整个“处理器”中,CPU部分只占芯片面积的15%,其他85%则被图像处理器(GPU)、数字信号处理器(DSP)、调制解调器(Modem)、导航定位、多媒体等等芯片或者模块占据。   事实上,比起“处理器”,我们把这种芯片称为“SoC(System on Chip,片上系统)”更加合适。SoC是一个微小的系统,如果把中央处理器(CPU)比作大脑,那么SoC就是包括大脑、心脏、眼睛和手的整个人体。    CPU:手机的大脑   如果把SoC比作人体,
[手机便携]
基于FPGA的简易频谱分析仪
1 引言 目前,由于频谱分析仪价格昂贵,高等院校只是少数实验室配有频谱仪。但电子信息类教学,如果没有频谱仪辅助观察,学生只能从书本中抽象理解信号特征,严重影响教学实验效果。 针对这种现状提出一种基于FPGA的简易频谱分析仪设计方案,其优点是成本低,性能指标满足教学实验所要求的检测信号范围。 2 设计方案 图1为系统设计总体框图。该系统采用C8051系列单片机中的 C8051F121作为控制器,CvcloneⅢ系列EP3C40F484C8型FPGA为数字信号算法处理单元。系统设计遵循抽样定理,在时域内截取一段适当长度信号,对其信号抽样量化,按照具体的步骤求取信号的频谱,并在LCD上显示信号的频谱,同时提供友好的人机会话功能。
[测试测量]
基于<font color='red'>FPGA</font>的简易频谱分析仪
基于模块化设计方法实现FPGA动态部分重构
介绍了Xilinx FPGA 的配置原理和 FPGA 模块化设计流程以及划分重构模块的原则。通过一个实例介绍了采用模块化设计方法实现Virtex-E FPGA动态部分重构的过程,能使重构模块在系统运行时改变其逻辑功能,而固定模块逻辑功能不中断,同时器件的重构时间大大减少。 随着可编程技术的不断发展,FPGA被广泛应用于 电子 设计的各个领域。新的设计思想和设计方法也被不断的提出和应用,如FPGA的动态部分重构技术。所谓动态重构是指对于时序变化的数字逻辑系统,其时序逻辑的发生,不是通过调用芯片内不同区域不同逻辑资源的组合来实现,而是通过对具有专门缓存逻辑资源的FPGA,进行局部和全局芯片逻辑的动态重构而快速实现。动态可重构FPGA
[电源管理]
德州仪器4G无线基站SoC
日前,德州仪器 (TI) 宣布推出业界首款可充分满足无线数据激增需求且拥有 4G 性能级别的无线基站片上系统 (SoC),从而可在全球运营商纷纷通过低成本方式努力提高网络容量的市场环境下,帮助他们在应对用户数据激增方面始终运筹帷幄。 TMS320TCI6616 SoC 自设计之初即以无线数据引擎为构建目标,其建立在 TI 全新 TMS320C66x 数字信号处理器 (DSP) 与 KeyStone 多内核架构基础之上,拥有比当前市面上任意一款 3G/4G SoC 高出两倍的性能。此外,TCI6616 还可大幅提升业界首款能够同时处理定点和浮点数学运算的多内核 DSP 的性能,这一极富创新性的强大功能可显著简化无线基站的软件设计。
[网络通信]
基于DSP的SPWM变频电源数字控制
   摘要: 介绍了基于DSP的变频电源数字控制系统,详细讨论了利用DSP TMS320LF2407产生频率幅值可按需要改变的SPWM波的程序设计策略和算法。实验效果很好,满足了变频器在线调试的要求。    关键词: 变频电源;正弦脉宽调制;数字信号处理器    0 引言   数字信号处理器(DSP)已广泛应用在高频开关电源的控制,采取DSP作为变频电源的控制核心,可以用最少的软硬件实现灵活、准确的在线控制。数字信号处理器TMS320LF2407既有一般DSP芯片的特点,还在片内集成了许多外设电路,使其可以很方便地实现变频电源控制。本文中,控制系统采用了工程应用较多的正弦脉宽凋制技术,该技术具有算法简单,硬件实现容易,谐波较
[应用]
一种基于NiosⅡ的可重构DSP系统设计
  为了解决传统 DSP 所面临的速度低、硬件结构不可重构、开发升级周期长和不可移植等问题,本文应用Altera公司推出的 NiosII 嵌入式软核处理器,提出了一种具有常规 DSP 的 NiosII 系统功能SOPC解决方案。由于可编程的 NiosII 核含有许多可配置的接口模块,用户可根据设计要求,利用QuartusII和 SOPC Builder对NiosII及其外围系统进行构建。用户还可通过Matlab和 DSP Builder,或直接用VHDL等硬件描述语言,为NiosII嵌入式处理器设计各类硬件模块,并以指令的形式加入到NiosII的指令系统中,使其成为NiosII系统的一个接口设备,与整个
[嵌入式]
深圳四部门:重点突破 CPU、GPU、DSPFPGA 等高端通用芯片设计
今(6)日,深圳市发改委、深圳市科技创新委员会、深圳市工信局、深圳市国资委发布《深圳市培育发展半导体与集成电路产业集群行动计划(2022-2025 年)》(以下简称《计划》)。 《计划》提出,到2025年,产业营收突破2500亿元,形成3家以上营收超过100亿元和一批营收超过10亿元的设计企业,引进和培育3家营收超20亿元的制造企业,集成电路产业能级明显提升,产业结构更加合理。 《计划》指出,要建成较大规模生产线,设备、材料、先进封测等上下游环节配套完善,形成从衬底、外延到芯片制造到器件应用完整的宽禁带半导体产业链条。到2025年,产业链国产化水平进一步提升,本地产业链配套和协作能力显著增强。 在高端芯片突破方面,《计划》强调
[手机便携]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved