基于FPGA的超声波信号处理研究

发布者:EternalBliss最新更新时间:2011-08-08 来源: 现代电子技术关键字:信号  FPGA  FIR  滤波器 手机看文章 扫描二维码
随时随地手机看文章
   

摘要:为了降低超声波流量检测过程中噪声对检测精度的影响,采用FPGA器件构建了FIR滤波器,并提出一种新颖的查表法替代滤波器中的乘法运算。试验结果表明,该滤波器设计方法显著降低了FPGA的片内硬件开销,提高了滤波器的运算速度,并具有良好的降噪效果。
关键词:超声波;信号;FPGA;FIR滤波器

0 引言
    在超声流量检测过程中,由于环境噪声使得流量检测的精度收到了严重的影响。目前多采用软件滤波的方法,对采集回来的声波信号进行数字处理,以提高检测的精度。此类方法对硬件处理器的运算能力要求较高,而且会影响检测的实时性。随着微电子技术的不断进步,FPGA的容量和处理速度已有了飞跃性的提高。特别是在数字信号处理方面,其性能已经超过了某些专用的信号处理芯片。本文在的超声波流量检测信号采样处理电路中,采用FPGA实现了声波信号的高速缓存和FIR滤波器,不仅达到了预期的消噪效果,而且提高了系统运行速度和集成度。下面将介绍FIR滤波器的具体实现过程。

1 数字滤波原理与设计
    FIR数字滤波器的特性可以用它的系统转移函数或差分方程来描述。一般地,线性是不变离散系统的差分方程,可表示为:
    a.jpg
    b.jpg
    式中:zr,pk分别为H(z)的M个零点和N个极点,它们由系统的形式和各系统参数ak,br所决定。FIR滤波器都是非递归形式的滤波器。
    c.jpg
    此系统的输出只与输入x(n),x(n-1),…有关,而与系统过去的输出y(n-1),y(n-2),…无关,此即非递归滤波器。
    滤波器设计采用Matlab中的FDA Tool计算带通滤波器系数。滤波器采用Kaiser窗函数设计,采样频率为40 MHz,窗上下截止频率分别为3 MHz和7 MHz。由此得到的滤波器系数为:
    d.jpg

2 FIR滤波器的FPGA实现
    由式(4)可知,FIR滤波器的数学表达式就是卷积运算,也就是做乘加运算。例如,一个M阶的FIR滤波器的输出是输入样本的M个依次值的加权和,加权系数就是此滤波器的单位冲激响应值。对于上节设计的10阶线性FIR滤波器,可以得到:
    e.jpg
    这样,10阶FIR滤波器的结构可以描述为:输入样本x(n)经过10阶移位寄存器延迟后得到10个具有不同延迟的抽头,将对称的抽头值相加后再与相应的权系数相乘,5个乘积相加就得到滤波器的输出值。滤波器结构如图1所示。

f.jpg

[page]
    滤波器抽头与权系数之间存在着乘法运算,在硬件实现中乘法运算是相当复杂的运算,不仅占用大量硬件资源,而且运算速度较慢。为了提高运算速度,在此利用FPGA逻辑单元(LE)中的查找表实现替代乘法运算的查表运算。为了说明方便,在此以4阶滤波器为例,数据为2位的二进制整形。设a(1)=01,a(2)=11,h(1)=10,h(2)=01,权系数与抽头之间的乘加运算如图2所示。

g.jpg


    图2中,P1(n)为抽头低位与权系数的乘积结果,P2(n)为抽头高位与权系数的乘积结果,在此称之为单位积。常规的计算顺序是先将P1(n)和P2(n)的对应项在垂直方向上移位相加,所得结果再进行水平方向上相加。但是从图中可以看出,先将P1(n)和P2(n)在水平方向上相加,然后再进行垂直方向上移位相加,所得的结果是一样的。第二种顺序中,P1(n)和P2(n)是h(n)和a(n)的某个比特位的乘积,而对于设计好的FIR滤波器h(n)是固定的,这样就可以通过a(n)某比特位的组合来查表求出P1(n)或P2(n),并在水平方向上实现求和。如表1所示,a1(n)表示a(n)的低位组合,单位积P1表示相应的权系数和。

h.jpg


    对于a(n)的高位组合,单位积P2可以建立同样的组合表。将P1和P2移位相加,即可得到滤波器的输出结果。在此例中采用的是2位二进制的权系数和输入样本,对于高精度的权系数和输入样本,只不过是增加更多的单位积P3,P4,…等等。
    实际操作过程中,基于FPGA的FIR滤波器通过三步完成,第一步将输入信号x(n)进行移位延迟,形成n阶抽头,再将相互对称的抽头相加得到滤波器抽头;第二步在FPGA中构造ROM,按前一步产生的滤波器抽头进行查表运算;最后将所有位的查表运算结果移位相加得到滤波器输出y(n)。

3 试验结果分析
    采用Altera公司的FPGA器件EPF10K30实现10阶的带通FIR滤波器进行试验。A/D采样频率为40 MHz,精度为12位,声波中心频率为5M-Hz。A/D采样得到的原始声波信号如图3所示。经过FIR滤波器处理后的声波信号如图4所示。

i.jpg


    试验结果表明,采用FPGA实现的FIR滤波器有效地消弱了噪声干扰,在保证实时性的基础上,为后期处理提供了可靠的数据。

4 结论
    针对超声波信号中的噪声采用基于FPGA的FIR滤波,提高了硬件电路的集成度,并取得了良好的消噪效果。在硬件实现过程中采用查表方法替代滤波过程中的乘法运算,节省了占用的片内资源,提高了处理速度。同时由于采用了并行硬件算法,其处理速度远高于CPU或DSP上的程序处理速度。

关键字:信号  FPGA  FIR  滤波器 引用地址:基于FPGA的超声波信号处理研究

上一篇:基于FPGA的PCM3032路系统信号同步数字复接设计
下一篇:低功耗控制器与高DC电压接口连接解决方案

推荐阅读最新更新时间:2024-05-02 21:31

科技如何改造金融业?
科技金融正在改变金融业的运营方式以及向客户提供产品和服务的方式。日前,newelectronics撰文,详细介绍了金融业形态如何被科技所改变。 技术越来越复杂,现在随着人工智能(AI),云计算和“大数据”分析的兴起,其影响力只会越来越大。 这些发展意味着金融世界不得不面对一些重大问题,如果银行和机构要跟上这些新发展,就必须接受激进的变革。 虽然行业正在应对这些挑战,但它也必须应对管理成本,因为虽然银行可能需要尖端技术,但他们也希望IT团队能够获得物有所值的投资以及他们所做的投资。 反过来,大型机构也必须管理多年来从许多不同元素构建的拼凑系统,并且希望保持这些不同的系统有效地工作,这将是一项复杂,耗时且昂贵的任务。 由于金融危机行业
[半导体设计/制造]
科技如何改造金融业?
如何进行TDD信号分析?
宽带通信网络正在全球范围内迅速发展,在当今的互联社会中,我们需要使用手机、平板电脑和各种互联设备进行教育、远程医疗和流媒体等一切活动。那么什么是TDD传输,如何应用频谱分析仪来进行信号研究呢? FDD与TDD传输的比较 在当今的移动网络中,无论是LTE还是5G,因为通常用户下载的数据多于上传的数据量,所以用户设备和基站(上行链路)之间传输的数据量往往是不对称的,反之亦然(下行链路)。随着业务模式的变化,有更多的上行链路应用被广泛使用,如云存储、视频通话等,上行和下行链路频谱使用的灵活性也变得更为重要。 为了提高灵活性和频谱利用效率,时分双工(TDD)技术的应用正变得越来越普遍和重要。虹科手持式频谱仪Spectrum Com
[测试测量]
如何进行TDD<font color='red'>信号</font>分析?
城市地铁视频监控联网技术系统案例分析
  目前城市地铁站视频监控一般分为两级监控;在地铁站端要求监视所有本站图像,另外在监控中心要求可以监视下属各地铁站的情况。考虑到资金投入的问题,在中心端,一般不要求同时看到所有地铁站的所有图像;而是采取两种方式监视:一种是同时监视各地铁站的某几路图像,另外一种是要求可同时看到某一个地铁站的所有图像或大部分图像。这就需要考虑从各地铁站到监控中心的视频传输问题。 ★从各地铁站到监控中心的视频传输一般有两种方案。 第一种是使用数字视频编解码器,通过SDH提供的E1信道完成视频传输; 第二种是采用光纤方式,独立组成城铁视频监控联网系统完成传输。 若采用第一种方式,需要占用大量SDH资源,增大了通信系统的压力。在第
[安防电子]
视频信号测量与发生基础
1. 理解复合视频信号 复合视频信号是所有需要生成视频信号的成分组合在同一信号中的信号。构成复合信号的三个主要成分如下: 亮度信号 包含视频图像的强度(亮度或暗度)信息 色彩信号 包含视频图像的色彩信息 同步信号 控制在电视显示屏等显示器上信号的扫描 单色复合信号是由两个成分组成的:亮度和同步。图1显示了这个信号(通常成为Y信号)。 图1:单色复合视频信号(亮度从白过渡到黑) 色彩信号通常被称为C信号,在图2中示出。 图2:彩色条的色彩信息信号(包括颜色突发) 复合彩色视频信号通常成为彩色视频、消隐与同步(CVBS)信号示Y与C之和,如图3所示。 CVBS = Y + C 图3:彩色条的彩
[测试测量]
视频<font color='red'>信号</font>测量与发生基础
基于FPGA和ARM的彩色图像处理系统
  引言   图像处理技术的快速发展,使得图像采集处理系统在提高农业生产自动化程度中的应用越来越广泛。目前的图像采集系统有的基于CCD摄像机、图像采集卡和计算机,有的基于CCD摄像机、解码器、FPGA和DSP,而有的基于CMOS图像传感器芯片、FPGA和DSP,它们在实时性,灵活性,可维护性方面各有优缺点。而在农业生产中,以基于CCD摄像机、图像采集卡和计算机的系统居多。本文结合实际系统中的前端图像处理和图像数据传输需要.充分利用ARM的灵活性和FPGA的并行性特点,设计了一种基于ARM+FPGA的图像快速采集传输系统。所选的ARM (Ad-vanced RISC Machines)体系结构是32位嵌入式RISC微处理器结构,该
[单片机]
基于<font color='red'>FPGA</font>和ARM的彩色图像处理系统
基于FPGA的嵌入式脉象采集仪硬件电路设计
  脉诊作为中医最重要的一种诊断方式,具有模糊性、不确定性的特点,是近年来中医现代化研究中的热点。随着电子、计算机技术的快速进步,将嵌入式技术、 FPGA技术、IP核技术结合在一起,融合电子技术、信号处理方法等学科知识,在中医基本理论的指导下,设计脉象诊断设备,构建一个灵活高效,可扩展性强,可靠性高,功耗低,可便携的脉象采集仪具有重要的现实意义和良好的市场前景。   1 仪器总体设计   嵌入式脉象采集仪的前期设计目标是脉搏信号的采集、存储、显示、简单处理、通信等,后期要对所采集到的信号处理,得到脉象特征,对病人做出诊断。在 FPGA的选型时,不但要考虑当前功能是否够用,价格适中,而且要考虑产品的升级换代,所以设计的系统选
[嵌入式]
Xilinx宣布亚马逊弹性计算云(EC2)F1实例已广泛采用 Virtex UltraScale+ FPGA
 All Programmable技术和器件的全球领先企业赛灵思公司(Xilinx, Inc.近日宣布,其高性能Xilinx® Virtex® UltraScale+™ 系列FPGA现已在亚马逊弹性计算云(Amazon Elastic Compute Cloud,EC2)F1实例中应用。下面就随网络通信小编一起来了解一下相关内容吧。 该实例除了利用FPGA提供可编程的硬件加速器之外,还支持用户最佳化他们的计算资源以满足其作业负载的特殊需求。 当亚马逊云端网络服务在云端提供安全且可调整的运算规模时,F1实例让用户利用FPGA部署硬件加速器更容易。因为FPGA具有可编程能力,用户无需重新设计任何硬件,即可拥有充分的灵活性升级或者优化
[网络通信]
信号建模与参数估计作业重新计算
下面的电路中: 测量RC电路 根据电路原理,可以知道上述电路稳态输入输出正弦信号之间的关系如下: 因此,输入输出正弦信号的幅度之比为: 输入输出正弦信号的相位差为: 所以,只要能够测量出U,V两个正弦信号的幅度或者相位,频率,再加上已知电阻阻值R1.,便可以计算出来待测电容的容值。 因此,如果根据同一组 参数,在上面公式中两个比例因子 应该相同,即: 但实际根据测量数据,经过正弦曲线拟合会发现,这两个数值相差很大: MATLAB计算出的参数的问题 这也就使得通过相位和幅值比这两个方法最终估计出来的电容C的容值也相差近一倍。这是为什么呢? 最后还是猜测,可能在原始数据中存在错误。下面重新再进行实验一次。
[测试测量]
<font color='red'>信号</font>建模与参数估计作业重新计算
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved