基于FPGA的数据采集及显示

发布者:beta13最新更新时间:2011-11-01 关键字:NiosII  FPGA  谐波分析  VGA 手机看文章 扫描二维码
随时随地手机看文章

摘  要: 在电力系统谐波分析中,模数转换(ADC)电路是影响系统检测性能的主要环节之一。基于NiosII的谐波分析系统具有逻辑控制能力强、信号处理实时性高、系统抗干扰能力强等特点。以Altera公司的DE2开发板为平台,实现了采样电路的硬件设计;在Quartus II 中用Verilog HDL语言完成了与FPGA的接口设计,并最终实现VGA显示。
关键词: ADC;NiosII;FPGA;谐波分析;VGA

 谐波是电力系统的一大公害,消除谐波污染,把谐波含量控制在允许范围内,已经成为主管部门和用电单位的共同奋斗目标。而要消除电网中的谐波,首先就要对谐波进行准确测量,谐波测量工作已经越来越引起人们的关注[1]。A/D转换电路是电力系统谐波测量中必不可少的一个重要环节,是电力系统谐波测量系统前端的核心。
 FPGA因具有强大的逻辑控制能力、高速的运算能力、灵活的可编程性,已经越来越多的被用于各种数字系统。在FPGA内部一般都内嵌有可配置的高速RAM、PLL、LVDS、LVTTL以及硬件乘法累加器等DSP模块。用FPGA模块来实现数字信号处理可以很好地解决并行和顺序性的矛盾,直至速度问题,而且其灵活的可配置性,使得FPGA构成的DSP系统非常易于修改,易于测试及硬件升级。在QuartusII开发软件中用Verilog HDL硬件描述语言能够很容易进行逻辑电路设计,并且在FPGA中可以实现用硬件进行配置,可有效降低软件运行时间和软件设计复杂程度[2]。因此,FPGA非常适合在电力系统谐波测量系统中作为核心器件。
 本文中采样电路选用AD73360,在QuartusII中用Verilog HDL硬件描述语言实现了AD73360及VGA与FPGA的接口设计,最后通过实验验证了设计的正确性。
1 系统总体方案
 系统以Altera公司的DE2开发板为平台,系统框图如图1所示。信号采集单元核心器件为电压、电流互感器。互感器将待测高压、大电流信号线性转换为合适的微弱电压信号,该微弱电压信号经信号调理电路放大为合适的电压信号,经低通滤波电路滤除高于2 500 Hz的高频噪声,然后送到A/D转换单元进行A/D转换,转换后形成数字信号存储到存储器中,再送到FFT处理单元进行快速傅里叶变换,变换后得到的数据再储存到存储器中,再进行一系列相关运算,如:谐波电压含有量、谐波电流含有量、各次谐波电压含有率、各次谐波电流含有率等,最后经VGA进行显示出波形和相关数据。

2 AD73360的配置[3]
2.1 A/D电路设计

 A/D电路如图2所示。A/D电路可分为以下三个部分。

 

 

 (1)电源部分。AD73360有5 V和3 V两种工作模式,为了能够与FPGA实现直接连接,采用3 V供电(FPGA接口电平为3.3 V左右),这样无需外加电平转换电路,可以简化电路设计、降低系统功耗、节约成本。
 (2)模拟输入部分。AD73360有6个通道,每个通道又分为正端VINP和负端VINN,每个通道都可以由AD73360内部控制寄存器配置为差分输入和单端输入两种方式,本设计采用单端交流耦合输入方式。
 (3)与FPGA接口部分。AD73360采用六线制串行接口,能很方便与外部电路实现接口连接,为了实现AD73360与FPGA的连接,就需要在FPGA中设计一个控制器,在Quartus II中设计的A/D控制器AD_controller如图3所示。

2.2 AD73360的配置
 AD73360为可编程A/D转换器,每次启动系统都要对其进行配置。对AD73360的配置有两种方式,一种方法是用程序来实现,另外一种方法是利用FPGA具有很强的逻辑控制能力,用硬件实现对AD73360的配置,后者虽然会占用一些硬件资源,但是这样可以大大简化系统程序设计,节约软件运行时间,因此本设计采用后者。系统上电或者手动复位后,AD73360被复位,在复位状态下,AD73360的八个控制字寄存器被初始化为00H,同时AD_controller也被复位到初始状态,SE被置1,从而AD73360串口进入工作状态。当复位信号变为高时,AD73360进入编程模式,该模式下,AD73360数字端接口时序如图4所示。在编程模式下,AD73360的SDOFS引脚以主时钟频率的1/2048的频率产生输出数据标志信号,当控制寄存器被正确配置后,将产生与设定采样频率同频的SDOFS标志信号,每个输出标志信号以后SDO引脚将连续输出16位随机数据,这时候的数据是随机产生的,不是有效的A/D转换数据。与此同时,在SCLK时钟的下降沿,若SDIFS标志位有效,则AD73360于下一个SCLK下降沿开始读取SDI引脚数据,并存到AD73360中的串行寄存器。

 撤销复位信号后,AD_controller开始对AD73360进行配置,配置过程如图4所示。系统复位后标志信号GO被置1,经过三个SCLK时钟周期后GO被置0,此时把第一个配置数据赋给SD,标志信号GO保持一个SCLK时钟周期后,又被置1。当标志信号GO=0时,AD_controller进入下一状态检测SDOFS,当检测到SDOFS由1变为0时,进入写数据状态,从SD最高位开始由高到低逐位往SDI端口写数据,每个SCLK时钟周期写一位,直到写完16位数据,AD73360根据这16位数据的前8位数据针对把后8位数据写入相应AD73360的相应控制寄存器,写完16位数据后,系统把SDIFS引脚设为高阻状态,并产生一个SCLK周期的END(对END置1)信号,作为一个控制字配置完成的标志。系统检测到END标志信号后,在未对所有控制字进行有效配置的情况下,把下一个控制字赋给PDATA,并产生一个SCLK周期的GO(把GO置0)标志信号,系统检测到GO标志信号后,再检测SDOFS,在SDOFS为1的下一个SCLK开始通过SDI端口向AD73360写下一个控制字,直到8个控制字都被写入AD73360,配置完成后,AD73360进入数据模式,开始进行A/D转换。完成配置任务后AD_controller结束配置状态,把SDI设为高阻状态,并开始接收SDO引脚的数据,并把接收到的串行数据转换成16位并行数据[4]。
 在QuartusII开发工具中,用Verilog HDL语言完成了对AD73360的配置,并进行了功能仿真,功能仿真结果如图5所示。

[page]

3 VGA显示
 VGA(Video Graphics Array)是IBM在1987年随PS/2机一起推出的一种视频传输标准,具有分辨率高、显示速率快、颜色丰富等优点,在彩色显示器领域得到了广泛的应用。随着电子技术的发展,VGA接口出现在很多嵌入式平台上,用于图像信息的实时显示等。Altera公司提供的DE2开发板上有一个VGA接口,极大地方便了利用VGA实时显示。
3.1 VGA显示原理及时序
 通用VGA显示卡系统主要由控制电路、显示缓存区和视频BIOS程序三个部分组成。控制电路主要完成时序发生、显示缓冲区数据操作、主时钟选择和D/A转换等功能;显示缓冲区提供显示数据缓存空间;视频BIOS作为控制程序固化在显示卡的ROM中。VGA接口为显示器提供两类信号,一类是数据信号,一类是控制信号。数据信号包括红、绿、蓝信号,简称RGB信号,控制信号包括水平同步信号和垂直同步信号。输出不同分辨率时,水平同步信号和垂直同步信号的频率也不同。
 要实现VGA显示就要解决数据来源、数据存储、时序实现等问题,其中关键还是如何实现VGA时序。VGA的标准参考显示时序如图6所示。行时序和帧时序都需要产生同步脉冲、显示后沿、显示时序段和显示前沿四个部分。几种常用模式的时序参数如表1所示。

 本系统集成了前端采集、中间处理和后续显示功能模块,充分利用了FPGA的逻辑资源和NiosII处理器的强大功能,较好地实现了预期目标。与同类系统相比,具有开发时间短、程序可移植性强和成本低等优势。该系统作为电力系统谐波分析系统的一部分,在数据采集及预处理方面已经取得较好的效果,后期将进一步研究基于FPGA内部逻辑结构的FFT实用算法。

关键字:NiosII  FPGA  谐波分析  VGA 引用地址:基于FPGA的数据采集及显示

上一篇:基于FPGA的高动态范围图像信号处理设计方案
下一篇:一种FPGA能耗优化的方法设计

推荐阅读最新更新时间:2024-05-02 21:41

针对微控制器应用的采用FPGA的嵌入式应用
  当你打开任何智能电子设备(从老式的电视遥控器到全球定位系统),会发现几乎所有的设备都至少采用了一个微控制器(MCU),很多设备里还会有多个微控制器。MCU往往被用于专用的终端产品或设备中,它能够很好地完成特殊任务。另一方面,PC的大脑,即微处理器被设计用于实现许多通用的功能。微控制器可用于降低成本,加固工业和自动化应用,将其嵌入FPGA中时,还可以通过重新编程迅速改变功能。这种灵活性使得单个设备可应用于接口标准不同的多个市场。   在选择微控制器时应考虑哪些因素?本文将主要探讨采用FPGA的嵌入式应用。不过,选择任何微控制器的标准本质上都是相同的。设计者需要考虑下列因素:终端产品的成本是多少?实现设计以及存储控制程序需要多少
[工业控制]
针对微控制器应用的采用<font color='red'>FPGA</font>的嵌入式应用
基于FPGA及嵌入式CPU 的TFT-LCD接口设计
1 引言 随着电子技术的飞速发展,TFT-LCD作为在亮度、对比度、功耗、寿命、体积和重量等综合性能上全面赶上和超过 CRT的显示器件,被广泛用于各种仪器仪表、电子设备及控制领域中。与之相关的显示控制技术也呈现出越来越多的方式。本文以 640*480的数字输入的 TFT_LCD显示屏为例,介绍了一种基于 NiosII软核处理器实现对 TFT-LCD接口的方法。解决了通常情况下必须使用LCD 控制专用芯片才能解决 LCD显示的问题。 2 系统组成 系统框如图 1所示。系统是由 FPGA、显示缓存 RAM、程序执行 RAM及 TFT-LCD组成。 FPGA(用虚线围成)选用的是 ALTER的 EP1C6,RAM采用的是 I
[嵌入式]
莱迪斯推出工业用基于ECP5 FPGA的全新开发板
Kondor AX开发平台采用莱迪思的低功耗、小尺寸ECP5 FPGA,能够实现可编程互连以及计算加速功能 丰富的外部接口以及对于Linux操作系统的支持使得该平台能够帮助实现快速的应用设计,包括小型蜂窝、IP摄像头以及物联网网关 莱迪思半导体公司(NASDAQ: LSCC),客制化智能互连解决方案市场的领先供应商,今日宣布携手Mikroprojekt推出基于ECP5 FPGA的全新开发平台,用于加速通信和工业领域中网络边缘应用的系统设计,包括HetNet小型蜂窝、工业物联网网关以及IP摄像头应用。Mikroprojekt的Kondor AX开发平台采用莱迪思的低功耗、小尺寸ECP5 FPGA,该器件提供灵活
[嵌入式]
液晶显示之殇(三)—接口篇
现在液晶电视的功能越来越多,功能越来越复杂,对着电视后面的一堆接口,你也许有时也会犯嘀咕,这么多接口都是干嘛用的啊,今天就跟大家一起聊下液晶电视各种各样的接口。       上图是目前常见的液晶电视主板,其上结合了大家现在能看到的大部分接口,下面就详细道来。   1.       高频头(tuner) 俗称调谐器,电视机使用的高频头一般分为数字信号高频头(简称数字高频头)和模拟信号高频头(简称模拟高频头)。目前LCD-TV上基本都是采用频率合成式高频头,其是以锁相环(PLL)技术为基础,对信号相位进行自动跟踪、控制的调谐系统。它有VHF调谐器和UHF调谐器组成。VHF调谐器由输入回路、高频放大器、本
[嵌入式]
基于FPGA实现的FFT插值正弦波频率估计
  对被噪声污染的正弦波信号进行频率估计是信号参数估计中的经典问题,目前国内外已提出不少方法。文献给出了在高斯白噪声中对正弦波信号频率进行最大似然估计算法,该算法能够达到卡拉美-罗限(CRB),但计算量大,实现困难。FFT频率估计方法具有速度快、便于实时处理的特性而得到了广泛应用。但FFT频率估计方法得到的是离散频率值,当信号频率与FFT离散频率不重合时,由于FFT的“栅栏”效应,信号的实际频率应位于两条谱线之间。显然仅仅利用FFT幅度最大值估计信号频率难以满足精度要求,因此各种插值算法应运而生。文献给出了Rife算法,在对输入信号进行一次FFT运算后,利用最大谱线及其相邻的一根次大谱线进行插值来确定真实频率位置。当信号的真实频率
[嵌入式]
基于<font color='red'>FPGA</font>实现的FFT插值正弦波频率估计
基于FPGA的LCD测试用信号发生器设计
摘要:在检测液晶屏特性和质量时,需要控制液晶屏显示一些标准信号。已有的一些信号产生设备产生的是AV信号、VGA信号或YPhPr信号等模拟制式的信号。模拟制式的信号需要经过图形处理器(GPU)转换成数字LVDS信号,然后输入到液晶屏的扫描控制电路产生相应图像。这个过程不可避免的会使图像信号产生一定程度的失真与损耗,影响图像质量。旨在设计一种新型信号发生器,该发生器产生的数字图像信号转换成数字LVDS信号后,直接输入液晶屏,以避免信号传输过程产生的失真与损耗。 关键词:液晶显示;信号发生器;FPGA;LVDS 0 引言 液晶显示已成为目前平板电视与计算机显示终端的主流,液晶显示器的研究设计、生产、检验等部门甚至消费者需要用一些
[嵌入式]
基于<font color='red'>FPGA</font>的LCD测试用信号发生器设计
FPGA平台架构提升信息娱乐系统设计灵活性
开发车载信息娱乐系统面临着前所未有的挑战。事实上,支持众多不一致甚至矛盾的要求需要采用全新的思路。设计基于FPGA的平台就是一种可行的解决方案,可通过设计灵活性来满足多样化的汽车要求。   对于那些想要达到新的期望值的OEM来说,问题在于改变整个供应链的基本行为,包括从如何建立信息娱乐系统架构到为这些系统提供的产品和服务。   这种压力又传递给了一级发动机控制单元(ECU)供应商,因为他们所服务的OEM坚持要迎合来自消费市场的产品要求,诸如要能够灵活地适应市场变化、降低成本以及不断缩短设计周期。在汽车市场中,这种变化的幅度是空前的,并且正在形成猛烈的风暴袭击一级供应商。一级供应商如果想在这一领域取得成功,就必须适应这
[嵌入式]
<font color='red'>FPGA</font>平台架构提升信息娱乐系统设计灵活性
新型的FPGA器件将支持多样化AI/ML创新进程
近日举办的GTC大会把人工智能/机器学习(AI/ML)领域中的算力比拼又带到了一个新的高度,这不只是说明了通用图形处理器(GPGPU)时代的来临 ,而是包括GPU、FPGA和NPU等一众数据处理加速器时代的来临,就像GPU以更高的计算密度和能效胜出CPU一样,各种加速器件在不同的AI/ML应用或者细分市场中将各具优势,未来并不是只要贵的而是更需要对的。 此次GTC上新推出的用于AI/ML计算或者大模型的B200芯片有一个显著的特点,它与传统的图形渲染GPU大相径庭并与上一代用于AI/ML计算的GPU很不一样。在其他算力器件品种中也是如此,AI/ML计算尤其是推理应用需要一种专为高带宽工作负载优化的新型FPGA,下面我们以Ach
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved