基于FPGA增量式编码器的接口设计与实现

发布者:知音学友最新更新时间:2011-12-15 来源: 电子科技关键字:FPGA  增量式光电编码器  4倍频鉴相 手机看文章 扫描二维码
随时随地手机看文章
   
摘要:光电增量式编码器,又称光电角位置传感器,是电气传动系统中用来测量电动机转速和转子位置的核心部件。分析了光电编码器4倍频原理,提出了一种基于可缟程逻辑器件FPGA对光电增量式编码器输出信号4倍频、鉴相、计数的具体方法,它对提高编码器分辨率与实现高精度、高稳定性的信号检测及位置伺服控制具有一定的现实意义。经实际项目论证,该方案在保证测量精度的前提下,可以有效滤除噪声干扰和消除抖动,增强了系统的干扰抑制和容错能力,可移植性强,便于系统升级。

    光电编码器在现代电机控制系统中常用以检测转子的位置与速度,是通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的高精度角位置测量传感器。由于其具有分辨率高、响应速度快、体积小、输出稳定等特点,被广泛应用于电机伺服控制系统中。

    编码器按信号输出形式分为绝对式编码器和增量式编码器。绝对式光电编码器具有输出数字量可与PC机、ARM或FPGA等器件直接接口,无累积误差等优点,但价格高、制造工艺复杂,不宜实现小型化。增量式光电编码器不具有计数和接口电路,一般输出A、B、Z脉冲信号,价格较低,在实际工程中比较常用。

   文中设计了一个基于FPGA的简单且精度高的接口电路,其结构简单、性能可靠。具有滤波、硬件辨向、4倍频计数和数据锁存等功能。计数结果以并口输出,可与PC机、ARM或FPGA等部件进行并行通信。同时在并口之前,用锁存电路来消除硬件电路延时所可能引起韵计数错误,减轻了后续微机的负担,可提高被控对象的测量和控制精度。

1 4倍频电路设计原理

    增量式光电编码器实际是一种旋转式角位移检测装置,它根据轴所转过的角度,输出一系列脉冲,能将机械转角变换成电脉冲,输出信号如图1所示。A、B两相信号是相位相差90°的正交方波脉冲串,每个脉冲代表被测对象旋转了一定的角度,A、B之间的相位关系则反映了被测对象的旋转方向,即当A相超前B相,转动方向为正转;当B相超前A相,转动方向为反转。Z信号是一个代表零位的脉冲信号,可用于调零、对位和重置计数器。

基于FPGA增量式编码器的接口设计与实现

    对于每个确定的编码器,每转过固定角位移θ,就对应一个脉冲信号,故其量化误差为θ/2。若将A或B信号4倍频,则在此θ角位移内,就会产生4个脉冲信号,其量化误差下降为0/8,光电编码器的角位移测量精度提高4倍。由于伺服系统中编码器的转速具有不可预见性,造成脉冲周期r具有不确定的特点,从而无法使用锁相环等常用倍频方案。由图1可知,在脉冲周期内,A、B两相信号共产生4次变化,尽管T不确定,但由于A、B两相方波信号之间相位关系确定,使这4次变化在相位上平均分布。如果利用这4次变化产生4倍频信号,则可以实现光电编码器测量精度的提高。

    分析发现,4倍频设计的关键在于鉴别出A、B信号的上升沿和下降沿。输入信号与其延时信号异或后,就可得到倍频信号。

2 接口电路的FPGA总体方案及设计实现

    光电编码器的可靠性与精度直接决定了控制系统的可靠性与控制精度。控制系统精度不会高于检测元件的精度,也就是说检测元件的误差是决定控制系统稳态误差的关键,这种误差也是控制系统无法克服的。因此,选择和设计高精度的光电编码器固然重要,但后续电路对光电编码器输出脉冲的处理精度也不容忽视。因此,一方面要选择精度高的光电编码器;另一方面要重视对光电编码器输出脉冲的处理,传统的处理方法有3种:(1)通过74LS193、74LS171、RC等搭建一个硬件电路实现脉冲的倍频和鉴相的判断。(2)直接将光电编码器的A、B信号送至微处理器,进行纯软件的倍频和鉴相的判别。(3)通过硬件电路和软件结合的方法进行光电编码器脉冲的处理,一般是指上述两种方法的结合。

    对以上3种计数方法进行分析可知,用纯软件计数虽然电路简单,但是计数速度慢,微处理器工作量大,难以满足实时性要求,想得到更高的指标,只能不断地更换高性能微处理器,而且由于光电编码器的转速具有不可预见性,采用锁相环进行倍频的话会造成数据的不精确;而纯硬件电路体积大且稳定性、可靠性差、调试烦琐,而且当电阻、电容等组件参数变化时,会导致脉宽发生变化或不能产生具有稳定宽度的脉冲。此外,RC电路抗干扰能力差,反馈部分易受外界干扰,在实际应用中会出现丢失脉冲现象,以至影响控制系统的精度和可靠性。

    对于滤波、延时的处理方法很多,如微分型电路其信噪比小、抗干扰性差,积分型电路可以提高信噪比,但和微分型电路一样有缺点:当输入信号频率高时,电容充放电不及时,导致输出信号严重变形;对于各路倍频电路来说,电阻和电容的参数不可能完全一致,所以倍频后的各路脉冲宽度不等,而且宽度的调节也比较困难。设计采用的数字型延时电路可以很好地克服以上延时电路的缺点,延时的时间和各路倍频的脉冲宽度由时钟控制,倍频后的脉冲宽度均匀一致。

基于FPGA增量式编码器的接口设计与实现

    运用FPGA实现4倍频、鉴相电路,采用全数字反馈电路的设计方法,由于倍频、鉴相电路设计在同一芯片上,一方面,FPGA门电路高数量较大,时钟频率可达上百MHz的可编程逻辑器件,可以把他设计成所需的各种逻辑器件,可并行处理多项任务。因此处理速度比单片机或DSP快得多;另一方面,芯片内部的门电路、触发器的参数特性完全一致,能保证在相同转速下4倍频脉冲信号的周期保持一致。作为板级芯片,电路做在芯片内部,其抗干扰能力比分离器件有很大提高。同时,由于现场可编程,可以方便地实现对电路的重新设计或修改,增强了系统的灵活性、通用性和可靠性。

3 仿真波形

    用Verilog HDL语言完成电路描述,各功能模块运用原理图方式进行描述,芯片采用Ahera公司Cyclone系列的EP1C12Q240C8N。在Quart-usII10.0环境下进行功能和时序仿真。编译后结果如图3所示,A、B即为差分整形电路的输出,当A相超前B相时,输出正向4倍频脉冲,OA[7..0]为编码器正转时4倍频脉冲个数;反之,输出反向4倍频脉冲,OB[7..0]为反转时4倍频脉冲个数。利用OA[7..0]与OB[7..0]可以方便地实现编码器的可逆计数。

基于FPGA增量式编码器的接口设计与实现

4 结束语

    设计了增量式光电编码器的一种简单且高精度的鉴相、计数和接口电路,可根据光电编码器的转向进行递增或递减计数,并可与PC机、DSP、ARM等器件直接进行并行通讯。实验结果验证了设计的正确性。可以看出,利用FPGA设计光电编码器信号处理模块,无论是设计过程,还是电路结构、都变得更加简洁。另外,在应用中注意FPGA的时钟周期应小于编码器脉冲的1/4,通常FPGA的时钟已远远小于编码器脉冲周期,故在FPGA中进行处理与计数是没问题的。

    文中FPGA实现的编码器倍频、鉴相电路,已经在激光跟踪系统的项目中得到验证,在系统中存在抖动及毛刺等干扰的情况下,仍能获得稳定可靠的测量结果,并且可根据需要,任意改变参数以达到目的,这对正确和合理地使用编码器,提高功能效益,从而在数控及机器人的死循环位置和速度控制系统中,提高位置调节精度、扩大速度调节范围,都有良好的效果,是一种提高编码器分辨率、实现角位移或转速测量的优选电路。

关键字:FPGA  增量式光电编码器  4倍频鉴相 引用地址:基于FPGA增量式编码器的接口设计与实现

上一篇:赛灵思客户喜获首批Zynq-7000 器件 — 全球第一款可扩展处理平台
下一篇:基于SD卡的FPGA配置

推荐阅读最新更新时间:2024-05-02 21:47

基于DSP和FPGA技术的低信噪比雷达信号检测
  我国目前的海事雷达大多为进口雷达,有效探测距离小,在信噪比降为3 dB时已经无法识别信号。随着微电子技术的迅猛发展,高速A/D(模拟/数字转换)和高速数字信号处理器件(Digital Signal Proeessors,DSP)、高速现场可编程逻辑器件(Field ProgrammableGate Array,FPGA)的出现,可以在不增加现有雷达发射功率和接收灵敏度的前提下,在信噪比降为3 dB时能测到雷达信号,使雷达的有效作用距离提高。本文主要介绍基于DSP和FPGA技术的低信噪比情况下雷达信号的检测。   1 设计思想   本技术的设计思想主要是通过对接收到的雷达信号进行高速A/D采样,然后利用DSP和FPGA芯
[嵌入式]
基于FPGA的B超成像系统图像采集的原理和实现
1、引言 医学超声诊断成像技术大多数采用超声脉冲回波法,即利用探头产生超声波进入人体,由人体组织反射产生的回波经换能器接收后转换为电信号,经过提取、放大、处理,再由数字扫描变换器转换为标准视频信号,最后由显示器进行显示。在基于FPGA+ARM 9硬件平台的全数字化B超诊断仪中,前端探头返回的回波电信号需由实时采集系统进行波束合成、相关处理、采集并传输至ARM嵌入式处理系统,视频信号数据量大,实时性要求高,因此选用FPGA+SRAM构成实时采集系统,在速度和容量上都能满足上述要求。主要介绍B超成像系统中应用FPGA进行逻辑控制进行超声视频图像采集的原理和实现。 2、系统构成工作原理 如图1所示,采集系统首先由数字波束合成
[工业控制]
基于<font color='red'>FPGA</font>的B超成像系统图像采集的原理和实现
一种基于FPGA+DSP的通用飞控计算机平台设计
  飞控计算机是现代导弹制导与控制系统的核心装置,其性能的好坏直接关系到精确制导的精度和杀伤目标的概率。近年来舵机、导引头、惯导等弹载设备日益向着数字化方向发展,因此设计一种能兼容多数字式设备的通用飞控计算机平台尤为重要。传统的单处理器核心飞控计算机难以在多通道异步数据收发的同时保证数据处理速度,难以满足现代导弹的要求。本文提出了一种基于DSP+FPGA结构,对外接口为422的通用数字飞控计算机平台。此平台能充分发挥DSP的运算速度,实现飞控算法。采用基于FPGA的双RAM缓冲机制,能很好地解决异步串行数据实时同步数据处理问题,满足飞控系统需求。   1 设计思想和工作原理   1.1 设计思想   对于单DSP核心的飞控计算机,
[嵌入式]
一种基于<font color='red'>FPGA</font>+DSP的通用飞控计算机平台设计
基于FPGA的数字核脉冲分析器硬件设计方案
  0 引言   多道脉冲幅度分析仪和射线能谱仪是核监测与和技术应用中常用的仪器。20世纪90年代国外就已经推出了基于高速核脉冲波形采样和数字滤波成型技术的新型多道能谱仪,使数字化成为脉冲能谱仪发展的重要方向。国内谱仪技术多年来一直停留在模拟技术水平上,数字化能谱测量技术仍处于方法研究阶段。为了满足不断增长的高性能能谱仪需求,迫切需要研制一种数字化 能谱仪。通过核脉冲分析仪显示在显示器上的核能谱帮助人们了解核物质的放射性的程度。   1 数字多道分析仪的优势   国内很大一部分学者采用核谱仪模拟电路的方式实现脉冲堆积的处理。由于整个过程都是由模拟电路来实现,所以一直受到多种不利因素的困扰:模拟滤波成形电路有限的处理能力达不到最佳
[测试测量]
基于<font color='red'>FPGA</font>的数字核脉冲分析器硬件设计方案
Xilinx首批Virtex UltraScale FPGA发货
将业界唯一20nm高端产品系列单芯片应用扩至500G,Virtex UltraScale带来了领先竞争对手整整一代的高质量高端产品。 2015年5月14日, 中国北京 - All Programmable 技术和器件的全球领先企业赛灵思公司(Xilinx, Inc. (NASDAQ:XLNX))今天宣布首批Virtex® UltraScale™ VU095 All Programmable FPGA已经开始向客户发货,并将业界唯一20nm高端产品系列扩展至单芯片400G和500G应用。Virtex UltraScale VU095器件可为有线通信、测试测量、航空航天与军用以及数据中心等多种不同应用带来前所未有的高性能、系统
[嵌入式]
一种基于ARM内核SoC的FPGA 验证环境设计方法
引 言 随着片上系统(SoC) 设计的复杂度和性能要求的不断提高, 软硬件协同设计(Hardware/ Software Co2de2sign) 贯穿于SoC 设计的始终。软硬件协同设计是一个以性能和实现成本为尺度的循环优化过程,验证设计是其中必不可少的重要环节。目前大多数公司提供的开发验证系统(开发板) 存在两个弱点:一是开发板的性能、规模难以根据特定的设计需求灵活、自由地调节;二是开发板的功能大多数只能进行软件代码的调试,即使ARM公司提供的开发平台也只能调试部分硬件。这两个弱点均在一定程度上限制了软硬件划分的探索空间,使所设计的SoC 不能获得更佳结构实现的能力。 本文利用现场可编程门阵列(FPGA) 重用性好、现场灵活性好
[单片机]
一种基于ARM内核SoC的<font color='red'>FPGA</font> 验证环境设计方法
FPGA实现32阶FIR数字滤波器的硬件电路方案
 随着软件无线电的发展,对于滤波器的处理速度要求越来越高。传统的FIR滤波器一般采用通用DSP处理器,但是DSP处理器采用的是串行运算,而FPGA是现场可编程阵列,可以实现专用集成电路,另外还可以采用纯并行结构及考虑流水线结构,因此在处理速度上可以明显高于DSP处理器。本文采用并行分布式算法在FPGA上设计并实现了高速处理的32阶FIR低通滤波器,在此过程中利用Matlab的数值计算与分析功能来提高设计效率。   在数字信号处理中,数字滤波器的应用是极其广泛和重要的单元。与模拟滤波器相比,数字滤波器可以克服模拟滤波器所无法克服的电压漂移,温度漂移以及噪声等问题。数字滤波器根据冲击响应函数的特性,可以分为IIR滤波器和FIR滤波器
[嵌入式]
<font color='red'>FPGA</font>实现32阶FIR数字滤波器的硬件电路方案
FPGA在多进制正交扩频通信系统中的应用
    摘 要: 讨论了高速无线分组网络中多进制正交扩频通信系统的设计和实现,其中在系统核心部分的扩频编码调制和解调等很多功能都由FPGA来完成,并对此进行了详细的介绍。     关键词: FPGA 扩频通信 多进制正交扩频 QPSK调制        门阵列逻辑电路在数字系统设计中得到广泛的应用,因此从GAL、EPLD直至目前的FPGA(现场可编程门阵列),容量和功能以及可靠性都得到很大的发展。目前的FPGA结构采用总线方式,布局布线方便灵活,Altera公司的FLEX10K系列FPGA掩埋带有入出寄存器的RAM块,更加方便地应用于CPU系统。随着器件的发展,开发环境进一步得到优化。Altera公司的Ma
[工业控制]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved