LED碳化硅衬底基础概要

最新更新时间:2011-06-19来源: ledinside 关键字:LED  碳化硅 手机看文章 扫描二维码
随时随地手机看文章

    碳化硅又称金钢砂或耐火砂。碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。碳化硅主要分为黑色碳化硅和绿色碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。其中:黑碳化硅是以石英砂,石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。

    碳化硅的硬度很大,具有优良的导热和导电性能,高温时能抗氧化。可以作为磨料,可用来做磨具,如砂轮、油石、磨头、砂瓦类等。还可以作为冶金去氧剂和耐高温材料。碳化硅主要有四大应用领域,即: 功能陶瓷、高级耐火材料、磨料及冶金原料。并且高纯度的单晶,可用于制造半导体、制造碳化硅纤维。碳化硅(SiC)由于其独特的物理及电子特性,在一些应用上成为最佳的半导体材料: 短波长光电元件,高温,抗幅射以及高频大功率元件。主要优势如下:

    1. 宽能级(eV)
4H-SiC: 3.26 6H-Sic: 3.03 GaAs: 1.43 Si: 1.12
    2. 高热传导率(W/cm?K@RT)
4H-SiC: 3.0-3.8 6H-SiC: 3.0-3.8 GaAs: 0.5 Si: 1.5
    3. 高击穿电场(V/cm)
4H-SiC: 2.2x106 6H-SiC: 2.4x106 GaAs: 3x105 Si: 2.5x105
    4. 高饱和电子迁移速度(cm/sec @E 2x105V/cm)
4H-SiC: 2.0x107 6H-SiC: 2.0x107 GaAs: 1.0x10 Si: 1.0x107

    由于碳化硅的宽能级,以其制成的电子元件可在极高温下工作,可以抵受的电压或电场八倍于硅或砷化鎵,特别适用于制造高压大功率元件如高压二极体。碳化硅是热的良导体,导热特性优于任何其他半导体材料。碳化硅优良的特性使其在工业和军事上有很大的应用范围。

关键字:LED  碳化硅 编辑:探路者 引用地址:LED碳化硅衬底基础概要

上一篇:LED发光字小知识
下一篇:如何选择LED护栏管

推荐阅读最新更新时间:2023-10-18 15:23

建筑LED与室内LED的驱动电路
  LED效率高于白炽灯,寿命长100倍,但它们需要专门的电子驱动电路,以避免出现过载的情况。主要的工作参数相对简单:保持通过LED电流的恒定,并低于规定的最大值。   传统电源都有精准的电压输出,但电流是变化的。将LED串接一只电阻可以控制电流。这种设计假定了LED上的已知电压不会随LED的温度而变化。不幸的是,LED的正向电压实际上会随温度而改变。LED制造商通常按正向电压对自己的器件作筛选分类,让灯具制造商制造的产品在一个固定温度下满足这个正向电压。LED制造商采用未经筛选的LED做电路可以节省时间,并获得廉价的LED。LED还有负的正向电压-温度系数,使驱动电路进入热击穿状态,因此要求设计者在电路设计中采取保护措施。
[电源管理]
建筑<font color='red'>LED</font>与室内<font color='red'>LED</font>的驱动电路
东芝即将推出LED照明用交流/直流隔离型离线LED控制器
日前,东芝宣布研发了采用单级转换 PFC*、用于LED灯和照明设备的交流/直流离线LED控制器IC。 该产品目前提供样品,并将于今年七月上市。 新产品为隔离型反激式LED电源控制器,用于满足严苛的设计标准:支持可控硅调光;通过单级转换器实现有源PFC,提高PFC和减少外围器件;不使用光电耦合器和用于变压器次级平均LED电流控制的检测器。标准120-220VAC的功率因数值(PF)超过0.8-0.9,LED输出电流精确度达到+/-5%。 现在,LED灯已取代白炽灯,因为其更省电,使用寿命更长。东芝致力于开发更高功率LED控制、支持调光和更高功率因数、输出电流精确度更高和效率更高的产品。 *:功率因数校正:用于提高电
[电源管理]
利用LDO改善白光LED电流的匹配度
在白光LED应用中最明显的问题是产品的匹配性差,按照白光LED的典型规格,电流为20mA时正向电压的最小值为3.0V,典型值为3.5V,最大值为4.0V。显然,稳压源不是合理的解决方案。利用相同的电流驱动每只LED可以获得均匀亮度,但成本很高。大多数应用只是简单地利用固定偏置电压和限流电阻来获得近似匹配的白光LED亮度,如图1所示。   图1 利用固定偏置电压和限流电阻驱动LED电路   按照图1设计的电路通常可以得到相当好的亮度匹配,但对于大批量生产的白光LED,虽然同一批次的产品具有相当一致的特征指标,但不同批次之间的一致性较差,这就需要对每一批次的白光LED进行测试,为其配置限流电阻。如果存在多个白光LE
[电源管理]
利用LDO改善白光<font color='red'>LED</font>电流的匹配度
一种能提高LED发光材料质量的新技术问世
  日前外媒报导,北卡罗莱纳州立大学发现了一种通过降低氮化镓薄薄膜中的2~3个数量级缺陷,来提高LED发光材料的质量的新技术。   研究人员介绍,通过该技术,相同的输入电能能够多产生2倍的输出光能,对于低电能输入和紫外发光范围的LED而言,这种增长非常可观。   LED照明主要依赖于氮化镓薄膜的发光二极管,研究人员将2微米厚的GaN薄膜的一半厚度嵌入到长2微米宽,0.5微米的空间间隙,之后发现,许多缺陷会被吸引并困在这些空隙空间里。这使得空隙空间上减少了许多缺陷。因此,他们有效的在薄膜中放置一些空隙空间后,成功地防止缺陷蔓延到薄膜的其余部位。如果没有这个空隙技术,每平方厘米的氮化镓薄膜将会有大约1010个缺陷。然而使用了这个技术后
[电源管理]
深度分析LED路灯的检测技术、标准与发展前景
在 低碳 节能的口号下, LED照明 已经轰轰烈烈地展开,而受政府“ 十城万盏 ”政策的强力引导, LED路灯 产业的发展尤为迅猛。iSuppli的数据表明,国内LED照明厂商中,有50%以上的厂商专注于LED路灯照明。“‘十城万盏’项目至今虽然装了100万盏路灯不到,但是却有上千家厂商在做这个项目。”清华大学深圳研究生院 半导体照明 实验室副主任钱可元指出。可见政府政策给予了厂商极大的信心。不过发展到现在,LED路灯的检测结果始终不理想。在分析 光效 、光衰、配光、 色温 等技术问题时,检测方法中存在的漏洞也逐渐暴露出来。如果检测的手段不科学,LED照明这个朝阳产业将可能受到极大的牵绊。 LED路灯问题表象分析
[电源管理]
安森美半导体LED电源控制器解决方案性能如何?
LED 在照明上的应用已经随着成本的降低,逐渐被各种照明应用大量采用,市场潜力极为看好。本文将为你探讨 LED照明 应用的发展趋势,以及 安森美 半导体所提供的LED电源控制器解决方案。   稳定的电源控制 确保稳定的产品质量 随着LED技术的不断进步,众多不同的色彩与白色高亮度LED的推出,更将LED应用拓展到各种新的市场。以往主要用于当作指示灯的LED,随着LED的成本不断降低,效能更进一步提升,使其得以在汽车应用、消费电子等领域替代白炽灯和荧光灯等光源,包括智能手机、LCD电视、建筑照明与一般照明,都可以看到LED的身影。未来几年内,LED将会持续用于崭新的 固态照明 (Solid State Lighting, SSL)解
[嵌入式]
全面解读LED背光电视技术优势
2010年的下半年,风光无限的 CCFL 发光 LCD 显示 器逐渐被 led 取代,而LED的普及已经是板上钉钉的事实,2011年初,随着春节促销的到来,多款 LED显示 器纷纷上市,消费者对于LED的接受程度也水涨船高。 目前LED发光技术的优势已经深入人心,节能、低温、无辐射、长寿命等特性使得LED发光技术被大量应用于 液晶 显示器的制造,一线显示器厂商纷纷推出多款色彩表现优异、 亮度 均衡、低能耗的LED显示器产品,展开了自LCD之后又一轮新的竞争。   LED发光优势 LED发光技术的色彩优势显著,所以在显示器制造方面备受青睐。目前已过时的CCFL(冷阴极背光灯)技术由于本身频谱限制, 色域
[电源管理]
全面解读<font color='red'>LED</font>背光电视技术优势
Zetex新型LED照明驱动器有效提升功率密度
模拟信号处理及功率管理解决方案供应商Zetex Semiconductors (捷特科) ,推出ZXLD1360 LED 驱动器。 ?新器件采用SOT23封装,能够提供1A可调整输出电流,功率密度高于市场上采用较大SO8封装的其他同类产品。ZXLD1360是一款降压稳压器件,可在7V至30V的供电范围内工作,还能处理高达24W的输出功率,适用于各种高功率LED照明应用。 ?Zetex公司首席营销官罗国威表示:“这款新型LED驱动器的散热增强型结构的效率高达95%,高度的组件集成可创建组件少、配置简单的紧凑LED照明解决方案。ZXLD1360集成了一个30V的NDMOS开关和高端电流检测电路,以设置与外部检测电阻器相关的
[新品]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved