本文不讨论双向晶闸管的变光技术,因为低光量不稳定性是因为不同的机制造成的,使用通信技术设定LED电流的变光方法包括DALI、0-10V、Zigbee和电力线载波控制。
LED驱动器端收到一个信号,并用其设置参考电流,同时控制环路调整LED电流,使其符合参考电流。只有控制精度很高,才能确保相邻灯具的亮度相同。低光量时出现的闪烁和弱光现象令设计人员困惑不解。
单级功率因数校正
如果使用两级功率转换器,就再出现低光量不稳定现象。第一级(升压或PFC-反激式)建立较稳定的电压,第二级(通常是降压逆变)精密调节LED内的电流。因为需要使用更多的元器件,双级解决方案的能效不如单级转换器好。出成本考虑,LED厂商通常选用单级PFC-反激式转换器。
问题
变光应至少在20区间内,提供这个光量范围,白炽灯没有任何问题,在低光功率时,白炽灯的能效大幅降低,20光量区间所需的功率范围比较窄。如果提供40%的电压或电流,光输出将会降到大约1%.市场期望LED解决这个难题。
LED的线性响应比白炽灯好很多,在低电流时,能效反而更高。人眼可辨别相邻光源之间5%的差异度,只对以百分比表示的差异度反应,而绝对光量不会引起人眼反应。这需要严密控制电流,在低光量时,控制精度要求更高。如果需要调节到全输出的1%,则不能使用一次侧控制。
与白炽灯不同,LED没有自过滤机制。白炽灯灯丝的热容量是一个很好的交流滤波器,而LED则需要外置滤波电路。常用解决方案是直接在LED上连接一个大型电解电容,而且滤波效果良好。
电解电容的容量根据光纹波的要求来确定。如果纹波电流小于10%rms(大约28%p-p),人眼感觉光线质量与纯直流一样。(此外,如果纹波电流高于10%,能源之星标志要求在灯上做出声明。)
LED有一个动态电阻(斜率电阻),其大小为视在V/I电阻的1/10左右。图2所示是典型LED的V-I曲线。
因此,如果纹波电流小于10%RMS,电容必须将LED上的电压控制在1%以内。所需的数值是:
不幸的是,电容还是控制环路的一部分。电容和LED动态电阻将控制环路极点设为大约30Hz.因此,在这个频率上,电容增加45度相位滞后,使环路增益降低6dB.我们稍后讨论这个问题。下图详细描述了仅因为LED控制环极性点而起的增益和相移。
注意,LED的动态阻抗随着电流降低而升高。不幸地是,这使得控制环极点移至左侧。在10%电流时,转折频率大约3Hz.在1%电流时,转折频率约为0.3Hz.注意,对于PFC级,典型控制环路有一个3Hz到20Hz的交叉频率。
设计一个极点在这个范围内可移动的控制环路是不合理的。唯一可行的解决方案是交叉频率在0.03~0.1Hz的设计,但是控制环路将会变得非常迟缓。
解决方案
我们还有另外一个解决方案。该解决方案需要更多元器件,但是效率只略受影响,成本还是低于双级驱动器。进入电容器和LED灯串的电流,即转换器输出电流,是可以测量的。
不过,因为PFC反激式转换器的输出电流是三角形脉冲,我们要使用有直流偏移的120Hz正波弦调制脉冲。我们要测量的是直流偏移。高频和120Hz频率必须过滤掉。脉冲电流还将大幅提高电流采样电阻器的功耗。
高频电流的波形和包络线如图5所示。
锯齿成份中的RMS电流很大。在低压线路上,对于宽压转换器(90Vac到305Vac),最大峰值电流是平均输出直流的8倍多,而RMS则是平均输出直流的2倍多。感应电阻器的功耗将是其置于电解电容后面时的4倍。
为解决这个问题,可以在转换器输出端放置一个小型薄膜电容或陶瓷电容。不需要太大的电容,但是电容的ESR必须低,RMS电流能力必须适当。可能需要并联多个电容。给电流采样电阻串联一个小电感也可能派上用场。薄膜电容对双线频率成份的影响非常小,因此,双线频率成份也必须滤除。
在电流采样电阻器内,正弦成份的加热效应较小,因为它在总电流的占比很小。直流与120Hz成份之间的关系是不会变化的,峰对峰交流是直流的2倍,因此,其RMS值是直流(LED电流)的0.707.RMS电流以正常的平方和的平方根方式增加:
电流采样电阻的功耗还是远远高于LED直流测量方法的功耗,电流增加到I2倍。
不过,这比开关频率成份的功耗好很多。
对于控制环路,用小SMT组件构成的简单的阻容滤波器可以滤除120Hz成份。这个解决方案将拥有稳定的增益和相移特性,这些特性只随频率变化,不受负载电流的影响。6db断点设置与全LED直流测量相同,或者频率可以略低一点。
图7是最终的输出电路示意图。
上一篇:自镇流LED灯性能及国内外标准要求
下一篇:基于器件特性进行精确的高亮度LED测试
推荐阅读最新更新时间:2023-10-12 22:42
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- 科学家研发基于AI的身份验证工具 可保护车辆免受网络攻击威胁
- Microchip推出广泛的IGBT 7 功率器件组合,专为可持续发展、电动出行和数据中心应用而设计
- 面向未来驾驶体验 博世推出新型微电子技术
- 英飞凌与马瑞利合作 利用AURIX™ TC4x MCU系列推动区域控制单元创新
- 5C超充,该怎么卷?
- 《2025年度中国汽车十大技术趋势》正式揭晓!你最看好哪个?
- Microchip推出新型VelocityDRIVE™软件平台和车规级多千兆位以太网交换芯片,支持软件定义汽车
- 英特尔中国正式发布2023-2024企业社会责任报告
- can转485数据是如何对应的
- MCU今年的重点:NPU和64位