无线传感器网络节点低功耗系统设计

发布者:BlissfulCharm最新更新时间:2009-10-19 来源: 云南大学关键字:ATmega324p  测量  无线传感器  网络节点  低功耗 手机看文章 扫描二维码
随时随地手机看文章

  1.基于IA4421的控制器模块低功耗设计

  1.1便携式模块节点硬件低功耗设计

  (1)处理器选择

  ATmega324p为一个功能强大的单片机,为许多嵌入式控制应用提供了灵活而低成本的解决方案:

  ①TQFP(薄塑封四角扁平封装),体积小,集成度高;

  ②6个可通过软件进行选择的省电模式;

  ③最高达到20MIPs的吞吐率(在20MHz下)。

  (2)接口电路低功耗设计

  接口电路的低功耗设计,往往是容易被忽略的一个环节。在这个环节里,首先要选择低功耗的外围芯片,然后根本的方法是使接口电路的常态处于低功耗状态。另外,还要考虑以下两个因素:

  ①上拉电阻/下拉电阻的选取。在能够正常驱动后级的情况下,尽可能选取更大的阻值。另外,当信号在多数情况下为低时,也可以考虑用下拉电阻,以降低功耗。

  ②对悬空脚的处理。CMOS悬空的输入端的输入阻抗极高,很可能感应一些电荷导致器件被高压击穿,而且还会使输入端信号电平随机变化,导致CPU在休眠时不断地被唤醒,从而无法进入休眠状态,或导致其他莫名其妙的故障。所以正确的方法是,将未使用到的输入端连接到电源VCC或地。

  (3)通信芯片选型

  IA4421是IntegrationAssociates公司推出的射频收发一体芯片,工作在433/868/915MHz频段。芯片的工作电压为2.2~5.4V,采用低功耗模式,待机电流为0.3μA,采用FSK调制模式,发射功率为5~8dBm,接收灵敏度为-109dBm。

  IA4421具有高数据传输速率,数字信号的传输速率可达115.2kbps,模拟信号的传输速率可达256kbps。

  1.2便携式控制器低功耗软件设计

  (1)各种功耗模式转换

  便携式控制器在硬件上由ATmega324p、IA4421和三星公司的LCD以及外围电路组成。把便携式控制器作为一个整体,定义了4种不同的工作模式,如表1所列。不同的工作模式,由便携式控制器上相关功能芯片的工作模式组合而定。

  ①ATmega324p选择Power-save模式的理由:在Pow-er-save睡眠模式下,除了Power-down模式下的所有功能外,Timer/Counter2可以正常工作,所以在Power_save睡眠模式下,系统的实时时钟系统可以正常运行,这也给系统功耗测试中的定时无线收发提供了条件。

  ②基于功耗模式转换的无线收发工作过程:当便携式控制器没有接收和发送任务时,进入睡眠模式,即LCD关闭,ATmega324p处于Power-save模式,IA4421处于SLEEP模式。在实际应用中,便携式控制器处于睡眠模式的时间应该最长。

  如果用户有传输数据的要求,便携式控制器可以通过按键、异步定时器2(实时时钟)以及接收到主机的信号后产生的外部中断信号(INT2)唤醒控制器,进行发送和接收的相关操作。任务完成后,再次进入睡眠模式。

  (2)低功耗键盘软件设计

  ATmega324p的PortA、PortB、PortC、PortD共有32个I/O口,每个I/O口都是一个外部中断源。当端口上检测到有电平跳变时,就可以产生一个外部中断(PCINT)。这个功能使得控制器的外部中断口数量不再受到限制。3×3键盘的6个接口分别接在普通的I/O口上就能实现中断按键。中断按键在本系统中有如下优点:

  ①中断按键程序不需要控制器一直处于扫描运行状态,比用Polling方式下的键盘扫描程序大大地降低了功耗。

  ②中断按键程序能够通过按键产生中断来唤醒控制器,在不影响系统功能的前提下,方便系统进行各种模式之间的转换。详细的键盘系统软件设计流程如图1所示。[page]

  2低功耗实验与结果分析

  2.1ATmega324p小系统的功耗实验

  ATmega324p小系统包括ATmega324p单片机、三星公司的S6B0741LCD模块以及供电电源(5V、2.5A电源适配器),在最小系统的功耗实验系统中没有加入无线通信芯片部分。

  (1)电流消耗理论值

  ATmega324p工作在8MHz频率以及LCD(S680741)工作在开启显示(背光关闭)、睡眠模式和关闭LCD(S680741)时的电流消耗理论值如表2所列。

  (2)最小系统在不同工作模式下实际电流值的测定在系统中下载C程序,分别测量系统在不同的组合模式下的电流消耗。测试环境为实验室内,温度20℃左右;使用万用表和100Ω电阻,ICCAVR开发环境,STK500下载器下载。

  在便携式控制器的总电源接口上串联一个100Ω的电阻,在不同的系统模式下分别测量电阻上的电压值,然后计算电流值。测试值与理论值的对比结果如表3所列。

[page]

  (3)实验结果分析

  ①LCD模块中主要包括控制芯片和LCM(显示器)。理论值中,LCD(S6B0741)的电流理论值并不包括LCM(显示器)所消耗的电流。当LCD开启,ATmega324p在Idle模式和正常工作模式时,理论值和实际测量值之间都大约相差3mA。可以得出,3mA的电流就是LCM(显示器)大约消耗的电流。

  ②实际测量的电流值比理论值要大,这样的能耗差异主要是消耗在便携式控制器模块中外围电路上。外围电路中各个电子元器件的理论消耗电流值很难查到,在计算的时候没有加入。

  ③虽然测量的方法很简单,测量的只是系统电流的静态值,但是这个测量的电流值可以大体上反映出系统在不同的工作状态下的功耗趋势,对系统的低功耗研究有一定的意义和应用价值。

  ④在各种工作模式下的实际测试结果对比中可以看出,最小系统的最小能耗和最大能耗之间相差大约10mA。所以,在低功耗设计中,不同功能要求下不同工作模式的转换是非常有意义的。

  ⑤LCD模块的背光打开和背光关闭消耗的电流差值在6mA左右,可见LCD的背光在系统中是耗能很大的器件。所以,从节约能耗的角度考虑,一般正常情况下不开启LCD背光。

  2.2便携式控制器低功耗测试实验

  为了验证便携式控制器的耗电性能,在采取了上述软硬件低功耗措施后,对便携式模块的功耗性能做了下述实验。验证结果表明,所设计的模块在功耗方面基本满足了系统的应用要求。

  (1)实验内容

  ①用ATmega324.p的定时器2进行定时收发,每隔2.5小时发送接收1次数据,1天发送9次数据。

  ②在没有发送接收任务的时段,ATmega324p处于低功耗的睡眠状态Power-save,关闭LCD模块,IA4421工作在睡眠模式。从上面的小系统功耗实验中看出,这样的工作状态下整个便携式模块的耗能最低。测试的软件流程如图2所示。

  ③IA4421的无线通信参数为:工作频段433MHz,数据传输率9.6kbps,相对发射功率0dBm,接收灵敏度-109dBm。这样的参数选择,在满足系统收发功能正常的情况下,尽量地使用低频段、低传输率,为了满足较远距离传输并尽量地降低发送接收的功耗。

  ④用3节7号的南孚碱性高能电池供电,测试开始时电池电压为4.86V。

  (2)实验结果与意义

  测试系统是针对便携式控制器与主机之间的点对点通信设计的。实验结果如表4所列。

  每2.5小时进行1次通信,这个通信频率对用户使用本系统的频率进行了较好的模拟。实验结果可以看出,电池的寿命大概在5个半月,并且是在每天通信10次的基础上测试得到的结果。这个电池寿命的指标基本达到了系统设计的要求,也证明了上述的软硬件措施是得当有效的。

  3结论

  本文详细分析了低功耗的软硬件设计方法,在不同工作任务下选取不同的工作模式对降低功耗具有重要的意义。在使用了得当的软硬件措施后,所设计的便携式控制器模块的电池寿命达到了半年左右,满足了无线传感器网络系统的应用需要。文中的低功耗设计方法和思想对实际产品的开发具有一定的参考价值。

关键字:ATmega324p  测量  无线传感器  网络节点  低功耗 引用地址:无线传感器网络节点低功耗系统设计

上一篇:测试厂商透露CDMA终端玄机 质量影响网络表现
下一篇:GPS测量技术在公路测量中的原理及应用

推荐阅读最新更新时间:2024-03-30 22:09

如何正确使用LCR测试仪测量电子元件
当今电子元件的设计追求高性能, 而同时又致力于减少尺寸、 功耗和成本。 有效而准确的元件性能描述、 设计、 评估和制造过程中的测试, 对于元件用户和生产厂家是至关重要的。 电感、 电容、 电阻是电子线路中使用最为广泛的电子器件, 在进行电子设计的基础上, 准确地测量这些器件的值是极其重要的。 LCR测试仪是一种采用交流方式测量电感、 电容、 电阻、 阻抗等无源元件参数的装置。 用LCR测试仪测量元器件的参数时, 其关键问题是测量误差。 它的误差来源主要有两部分, 首先是LCR测试仪本身的内部误差, 其次是由不正确校准、 测试件的连接方法及不正确选择测量电路模型引起的。 一般连接方法越麻烦越能准确地测量出元器件的参数。 2、
[测试测量]
如何正确使用LCR测试仪<font color='red'>测量</font>电子元件
万用表如何测量led灯好坏
随着电子科技的发展,日常照明跟上时势,加入了电子科技,为了节能,灯管也使用了LED(发光二极管),使用几十只高能LED运用串并联方式连接而成。 给LED灯管供电有多种方式,通常使用有开关电源和阻容串联式供电,开关电源效率高,市电压波动影响小,但成本较高,阻容串联式比较普遍应用,亦达到节能效果。 单凭一个普通万能表测量判定灯管的好坏,是不可能的(完全击穿除外)。 二极管的极性符号用A表示阳极(俗称为正),K表示阴极(俗称为负),电流一般是从A向K流动,LED灯的亮度用流明来衡量,亮照距离与波长有关。 用万能表测量单一只LED,还要看你使用的是机械针式万能表或数字万能表,两者的表笔代表的极性亦不同,机械表的黑笔(负表笔
[测试测量]
万用表如何<font color='red'>测量</font>led灯好坏
基于MSP430的无线传感器低功耗设计
  0 引言   无线传感器网络是由多个带有传感器、数据处理单元和通信模块的节点组织而成的网络,因为在军事、工业、医疗、农业等领域的巨大应用前景而成为近年来的研究热点。由于无线传感器节点通常工作在人们难以触及的环境中,并且节点能量有限,难以补充,所以降低功耗、延长使用寿命成为无线传感器网络设计的核心问题。因此,传感器网络的体系结构、通信协议、算法、电路和感知都必须满足能量有效性。就降低单个无线传感器节点功耗而言,除在硬件设计时采用低功耗元件外,动态功率管理(Dynamic Power Management,DPM)和动态电压调节(Dynamic Voltage Supply,DVS)都能有效地降低系统功耗。DPM的基本原理是传感器
[单片机]
基于MSP430的<font color='red'>无线传感器</font><font color='red'>低功耗</font>设计
基于ATmega128RFA1设计的低功耗ZigBee解决方
Atmel公司的ATmega128RFA1是低功耗CMOS 8位MCU,采用AVR增强性RISC架构和2.4GHz ISM频段高数据速率收发器,吞吐量达1 MIPS per MHz .无线收发器的数据速率从250 kb/s到高达2 Mb/s,还提供帧处理,有杰出的接收灵敏度(-100dBm)和高发送功率(达3.5dBm),主要应用在ZigBee® / IEEE 802.15.4-2006/2003,通用的2.4GHz ISM频段, F4CE, SP100, WirelessHART™, ISM和IPv6 / 6LoWPAN.本文介绍了ATmega128RFA1主要特性, 基本应用电路图和相应的材料清单(BOM),以及扩展特性应用电
[模拟电子]
基于ATmega128RFA1设计的<font color='red'>低功耗</font>ZigBee解决方
如何用示波器测量市电?
在ZDS2022示波器推广的过程中,经常有一线的工程师来与我们交流在市电测量上的一些疑惑,大致是以下几个问题: 1、为什么我用示波器测量市电总是跳闸呢? 2、测量市电为什么一定要将三脚插头的地线掰断才能测呢? 3、为什么我测市电会把示波器烧了呢? 好了,闲话少叙,上干货!今天的主题就是——如何用示波器安全测量市电? 认知市电 了解市电的供电线路及原理,有助于安全用电,安全测量!本文画了几个图,轻松助你测量市电! 火线、零线和地线 我国的市电(居民用电)规格为交流220V@50Hz,供电线路由火线、零线和地线组成,它们的关系如图1.1所示。 火线(L):也称相线,由发电站或变电站提供,电压220V,人体接触
[测试测量]
如何用示波器<font color='red'>测量</font>市电?
基于π网络零相位法的测量石英晶体静电容方案设计
   1. 引言   在石英晶体的中间测试中,需要测量串联谐振频率、串联谐振电阻、负载谐振频率、负载谐振电阻、静电容、动电容、频率牵引灵敏度和DLD等参数。其中,静电容C0主要由石英晶体两端所镀银膜决定,表征了石英晶体的静态特性,与石英晶体的串联谐振频率和负载谐振频率等应用指标密切相关。 目前,IEC(国际电工委员会)所推荐的石英晶体测量的标准方法是π网络零相位法。在该方法中,未规定测量静电容的标准方法。若采用谐振法、交流电桥法等常用方法来测量静电容,会增加整个测量系统的复杂性,并且对谐振频率的测量产生不利影响。本课题提出了一种基于π网络零相位法的测量石英晶体静电容的新方法,并据此设计制作了实验测量系统。   2.测
[测试测量]
基于π<font color='red'>网络</font>零相位法的<font color='red'>测量</font>石英晶体静电容方案设计
ST ToF传感器成功三大因素:镜头、API以及低功耗
ST(意法半导体)刚刚发布了VL53L5,这是第一款能够监测64个不同区域的ToF传感器。它与VL53L1X相似,因为它们都具有相同的量程,并采用了940 nm VCSEL。不过,新器件稍大一些,为6.4毫米x 3毫米x 1.5毫米。视野范围为61º(水平和垂直方向43º),而不是上一代的27º。 VL53L1X是2018年推出的ToF传感器,可达到4米测距范围,是市面上最小的ToF传感器。相比2016年推出的VL53L0X测距范围增加一倍。VL53LX的封装尺寸为4.9 mm x 2.5 mm x 1.56 mm,而VL53L0X的尺寸为4.4 mm x 2.4 mm x 1.0 mm。ST决定同时保留这两种器件,以帮助设计
[传感器]
ST ToF传感器成功三大因素:镜头、API以及<font color='red'>低功耗</font>
为功耗敏感应用选择最佳的低功耗、低成本FPGA
功耗敏感应用的设计人员如今面对前所未有严格的系统总体功耗限制、规范和标准。与此同时,这类应用所要求的功能、性能和复杂度正不断增加,但却不能以增加电池消耗和成本作为代价。对大多数工程决定来说,确定最佳的器件取决于功耗、性能、逻辑和I/O数量方面的设计约束。由于基于Flash的非易失性FPGA不需要数百万耗电的SRAM配置数据存储单元,其静态功耗较之于基于SRAM的解决方案低很多,因而成为功耗敏感应用的理想器件。 可选的解决方案 以前,大多数设计人员依赖ASIC来满足设计中的低功耗约束,而不是采用FPGA。由于开发周期较长、NRE高、缺乏应对标准变化及后期设计修改灵活性差,采用硬连线的ASIC风险较高,对产品生命周期较
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved