基于脉冲反射法的电缆故障检测仪设计

发布者:春林初盛最新更新时间:2011-06-08 关键字:电缆  故障检测仪  低压脉冲反射法  可编程逻辑器件 手机看文章 扫描二维码
随时随地手机看文章
引言
    电缆是通信、测试等系统信号传输的重要载体,随着电缆数量的增多及运行时间的延长,电缆也越来越频繁地发生故障。电缆线路的隐蔽性及测试设备的局限性,使电缆故障的查找非常困难。本文设计了一种以嵌入式微处理器Nios为核心的电缆故障检测仪,应用A/D器件和FPGA组成可变频率的高速数据采集系统,利用低压脉冲反射法原理来实现线缆的断路、短路、断路点、短路点的检测与定位。该仪器可广泛应用于通信维护、工程施工和综合布线,对市话电缆、同轴电缆等各种线缆进行测试和障碍维护。

1 系统总体结构
    利用低压脉冲反射法检测电缆故障。主要原理是:向电缆发送一个电压脉冲,当发射脉冲在传输线上遇到故障时,由于故障点阻抗不匹配,产生反向脉冲,通过计算二者的时间差△T,并分析反射脉冲的特性来进行故障的定性与定位。该方法适用于断线、接触不良、低电阻或短路故障的测试。
    故障点距离L为:L=V·△T/2。式中,V是脉冲在电缆中的传播速度。根据反向脉冲的极性可判断故障性质:断线或接触不良引起的反向脉冲为正,低电阻或短路故障引起的反向脉冲为负。
    该仪器是一个便携式电缆故障检测设备,可利用现代电子技术(如高速A/D技术、异步FIFO技术、现场可编程逻辑阵列FPGA等)来提高集成度和灵活性。系统总体结构如图1所示。

a.jpg


    脉冲发生电路产生探测脉冲,高速的A/D转换器对脉冲及其反射回波信号进行采样,使用异步FIFO作为A/D采样数据的缓存。软核Nios作为系统核心,控制检测任务的启动和结束、脉冲发送接收模式的选择、A/D采样数据的处理计算、故障性质和位置的判断及显示等。其中,软核处理器和逻辑功能都是在现场可编程逻辑器件中编程实现的。

2 功能及性能指标
    短路测试:检测电缆芯线之间是否有不必要的连接及其位置。
    断路测试:检测电缆中某芯线是否断路及其位置。
    显示:显示测试结果,即测量中开路及短路的位置。
    测量范围:2~1000 m。
    测试精度:可选择2 m和10 m两种精度。
    脉冲振幅:负载开路5 V。
    脉冲宽度:20 ns,100 ns。
    最大采样速率:100 MHz。
    波形记录长度:1024点。[page]

3 硬件设计
    以Altera公司的Cyelone II系列FPGA器件EP2C20为核心,利用其Nios软核功能设计了微处理器,并完成了相关电路的设计。通过编程FPGA器件定制脉冲发生、高速时钟以及高速数据存储FIFO等模块,以此为基础设计了脉冲发送和接收电路以及高速数据采集和处理电路。
3.1 微处理器系统
    简单来说,Nios是一种处理器的IP核,设计者可以将它放到FPGA中。Nios软核处理器是一种基干流水线的精简指令集通用微处理器,时钟信号频率最高可达75 MHz。采用Flash来存储启动代码和应用程序,当系统复位或加电启动时,Flash中的启动代码将被执行。采用SDRAM存储应用程序的可执行代码和数据,为程序提供运行空间。Nios软核与Flash和SDRAM的连接在FPGA中的设计如图2所示。

b.jpg


3.2 探测脉冲的产生
    故障检测所用脉冲信号的宽度为20~100 ns,FPGA的工作时钟可以达到200 MHz,在其中生成减法计数器可产生满足脉宽要求的脉冲信号。减法计数器产生脉冲的幅度受限于FPGA的工作电平,对检测来说是不够的,因此从FPGA中出来的方波脉冲还要经过放大,才可以耦合到被检测线缆中去。脉冲信号调理电路如图3所示。SN74LVC4245A用作电平转换。sta和pulse_input均来自FPGA。

d.jpg


    本设计采用的是5 V脉冲幅度,脉冲的馈送采取了晶体管射极驱动的方式。这种驱动方式比较简单,适用的器件也比较多。

[page]

3.3 A/D转换电路
    检测脉冲的宽度为20~100 ns,相应的数据采样率在20 MHz和100 MHz之间变化,一般的A/D芯片很难满足采样的要求,而用多片A/D芯片在成本和设计上都比较困难。这里选用美国NS公司的ADC08100,其采样速率为20~100 Msps,此时采样的功耗为1.3 mW/Msps,采样的功耗会随着采样时钟增加而增加,但是采样的特性不会受到影响,因此在采样率多样的系统中一个芯片可以起到多个芯片的作用。根据采样速率的不同,通过一个时钟控制模块产生相应的采样时钟信号,使芯片工作在所要求的速率之下,既可以节约成本,又可以简化设计。ADC08 100和FPGA配合使用,可以方便地改变采样时钟,具有很大的灵活性。
    A/D转换电路如图4所示。探测脉冲及回波信号需要转换成适合A/D芯片电压水平的信号后再进行采样。脉冲在输入运算放大器之前进行了钳位处理,采用两组倒置的二极管并联,避免脉冲过高而击穿运算放大器。


3.4 时钟信号的产生
    检测脉冲的产生、ADC08100的采样,以及异步FIFO的数据缓存构成了一个高速A/D数据采集系统。这对于各种信号的时间配合要求很高,需要专门的时钟单元来配合,以使电路工作在正确的时序之下。在FPGA中可方便地定制时钟模块来产生A/D采样时钟、异步存储器的读写时钟,以及脉冲发生模块的计数时钟。所有的时钟都是由一个高速的时钟来实现同步的,并且整个系统是在同一个启动信号下同步运行的,从而保证了采样的时序要求。
3.5 电源模块
    系统中既有模拟电路又有高速数字电路,使用电源种类复杂,存在+5 V、+3.3 V、+1.2 V、-5 V等多种电源信号。在电路板设计制作中既要减小高频数字信号对模拟信号的电磁干扰,又要避免各种电源之间的干扰,因此需合理规划模块布局及布线走向以提高信号稳定性。

4 软件设计
    软件设计主要包括FPGA的开发应用、应用程序设计以及液晶显示器的驱动程序设计等。
4.1 FPGA开发应用
    现场可编程逻辑器件FPGA(Field Programming Gate Array)具有高密度、高速度、低功耗、功能强大等特点。在此系统中采用了Altera公司的CycloneII系列器件来实现高速的数据采集、存储功能,是在QuartuslI 7.1软件中使用硬件描述语言VHDL来设计完成的。高密度可编程逻辑器件的设计流程包括:设计准备、设计输入、设计处理和器件编程4个步骤,以及相应的功能仿真(前仿真)、时序仿真(后仿真)和器件测试3个设计验证过程。
    本设计中,主要包括Nios微处理器、脉冲发生、高速时钟以及高速数据存储FIFO等模块的设计。
4.2 应用程序设计
    应用程序控制检测任务的启动和结束、脉冲发送接收模式的选择、A/D采样数据的处理计算、故障性质和位置的判断以及结果输出等。

结语
    本文提出了基于Nios软核的电缆故障检测仪设计方案。对于脉冲反射法检测故障的具体实现,提出了基于现场可编程逻辑器件的高速采样系统的设计思路,并在此基础上对系统进行了全面的设计。仿真和试验结果表明,该系统能够实现对电缆的断路、短路等故障的检测,具有在线监测、易于控制的优点,以及灵活和良好的扩展功能。

关键字:电缆  故障检测仪  低压脉冲反射法  可编程逻辑器件 引用地址:基于脉冲反射法的电缆故障检测仪设计

上一篇:浅谈 EDGE 演进及其测量
下一篇:利用OTDR快速定位光缆线路故障

推荐阅读最新更新时间:2024-03-30 22:14

基于CPLD/DSP的赛车全电防滑刹车控制器设计
1 引言 赛车刹车系统是赛车系统上具有相对独立功能的子系统,其作用是承受赛车的静态重量、动态冲击载荷以及吸收赛车刹车时的动能,实现赛车的制动与控制。其性能的好坏直接影响到赛车的快速反应、安全制动和生存能力,进而影响赛车的整体性能。本文设计了赛车全电防滑刹车控制器的硬件和软件,最后研究了适合于赛车刹车的控制律。 2 系统硬件电路设计 本赛车刹车控制器是由防滑控制器和电机驱动控制器组成。两个控制器都是以DSP芯片为核心。防滑控制器主要是以滑移率为控制对象,输出给定的刹车压力,以DSP芯片为CPU,外加赛车和机轮速度信号调理电路等。电机驱动控制器主要是调节刹车压力大小,并且控制电动机电流大小,也是以DSP芯片为CPU,再加外
[嵌入式]
Altera发售新的MAX V CPLD系列,总功耗降低50%
    扩展其最受欢迎的CPLD产品的供应,Altera公司今天宣布推出MAX V器件系列。与竞争CPLD相比,MAX V系列总功耗降低了一半,同时保持了最初MAX系列独特的瞬时接通、单芯片和非易失特性。     新的MAX V CPLD密度范围在40到2,210个逻辑单元(LE)之间,具有低功耗和高性能特性,非常适合各类市场领域中的通用和便携式设计,包括,固网、无线、消费类、计算机/存储、汽车电子和广播等。     与市场上其他密度等价的CPLD相比, MAX V CPLD总功耗降低了近50%。其它功耗优势包括低至45 μW的静态功耗,延长了电池使用寿命。此外,与竞争CPLD相比,MAX V CPLD在单位引脚布局中提
[嵌入式]
基于CPLD及DDS的正交信号源滤波器的设计
   1 引言   由于传统的多波形函数信号发生器需采用大量分离元件才能实现,且设计复杂,这里提出一种基于CPLD的多波形函数信号发生器。它采用CPLD作为函数信号发生器的处理器,以单片机和CPLD为核心,辅以必要的模拟和数字电路,构成的基于DDS(直接数字频率合成)技术、波形稳定、精度较高的多功能函数信号发生器。    2 系统设计   图1给出系统设计框图,该系统设计主要由CPLD电路、单片机电路、键盘输入液晶显示输出电路以及D/A转换电路和低通滤波器等电路组成。   2.1 频率合成器   该系统设计采用直接数字式频率合成DDS(Direct Digital Frequency Synthesis)技术,采用
[嵌入式]
基于<font color='red'>CPLD</font>及DDS的正交信号源滤波器的设计
矿井低压电缆绝缘在线监测探讨
我国煤矿井下低压电网采用变压器中性点绝缘的运行方式,电力的传输主要靠电缆。由于供电环境恶劣,电缆线路经常发生单相漏电或单相接地故障,不仅会引起人身触电,而且还可能导致瓦斯、煤尘爆炸,甚至使电气雷管提前引爆。因此,研究电缆绝缘参数的在线监测技术,对提高供电的安全性和可靠性具有非常重要的意义。 1 矿井低压电缆绝缘参数在线监测原理 煤矿井下长期以来采用基于零序电压的绝缘监测装置和基于功率方向的漏电保护装置。前者在电网三相绝缘对称下降后,不能反映其变化;后者只有在电缆发生漏电后才发出跳闸信号,不能在单相接地故障发生前对电网的绝缘水平做出准确的预测。针对其不足,本文采用基于附加低频电源检测的电缆绝缘参数在线监测方法。采用该方法不仅可以
[测试测量]
矿井<font color='red'>低压</font><font color='red'>电缆</font>绝缘在线监测探讨
基于CPLD/FPGA的CMI编码设计与实现
   0 引言   CMI码是传号反转码的简称,它是一种应用于PCM四次群和光纤传输系统中的常用线路码型,具有码变换设备简单、有较多的电平跃变,含有丰富的定时信息,便于时钟提取,有一定的纠错能力等优点。   在高次脉冲编码调制终端设备中广泛应用作接口码型,在速率低于8 448 Kb/s的光纤数字传输系统中也被建议作为线路传输码型。   本文针对光纤通信传输码型的要求和CMI码的编码原理,介绍了一种以EPM系列7064芯片为硬件平台,以Max+PlusⅡ为软件平台,以VHDL为开发工具,适合于CPLD实现的CMI编码器的设计方案。    1 CMI码的编码规则   CMI编码规则如表1所示。   在CMI编码中,输入
[嵌入式]
基于<font color='red'>CPLD</font>/FPGA的CMI编码设计与实现
基于CPLD实现QPSK调制电路的设计
  QPSK是数字通信系统中一种常用的多进制调制方式。其调制的基本原理:对输入的二进制序列按每两位码元分为一组,用载波的四种相位表征它们。实际上QPSK信号是两路正交双边带信号。现在人们对通信的要求越来越高,高速率、大容量、以及多业务,这些对有限的频谱资源构成了大的挑战。因此,对相移键控的研究具有重要意义,因为信道条件的限制,大多数数字通信系统采用了对幅度波动不敏感的频移键控、相移键控和相应的派生调制方式。   基于以上QPSK调制,本设计基于CPLD采用相位选择法来实现调制。   1。 QPSK调制原理   QPSK信号的正弦载波有4个可能的离散相位状态,每个载波相位携带2个二进制符号(00、01、10、11),其信号表示式为图
[电源管理]
基于<font color='red'>CPLD</font>实现QPSK调制电路的设计
基于CPLD的CCD驱动时序电路设计
  (1.台州学院 浙江台州 317000;2.长安大学信息工程学院 陕西西安 710064)   电荷耦合器件(CCD),是一种以电荷为信号载体的光电传感器。他具有光电转换,电荷存储,转移和检测等功能。广泛应用于图像拍摄、传真通信系统,光学字符识别、广播TV、工业检测与自动控制、生物标本分析、天文观测等领域中[1]。CCD的外围电路比较复杂,往往给使用者带来不便,特别是驱动时序电路的实现,这是CCD应用的关键问题。早期的CCD驱动电路几乎全部是由普通数字电路芯片实现的,由于需要复杂的三相或四相交迭脉冲,一般整个驱动电路需要20个芯片左右,体积较大,设计也复杂,偏重于硬件的实现,调试困难,灵活性较差。除了数字电路芯片实现驱动
[应用]
可编程逻辑器件在数字系统中的应用
    摘要: 介绍了可编程逻辑器件在数字信号处理系统中的应用。并运用VHDL语言对采用Lattice公司的ispLSI1032E可编程逻辑器件所构成的乘法器的结构、原理及各位加法器的VHDL作了详细的描述。该乘法器的是大特点是节省芯片资源,而且其运算速度取决于输入的时钟频率。     关键词: 数字信号处理 乘法器VHDL PLD 1 引言 随着半导体技术的发展,可编程逻辑器件在结构、工艺、集成度、功能、速度和灵活性等方面有了很大的改进和提高,从而为高效率、高质量、灵活地设计数字系统提供了可靠性。CPLD或FPGA技术的出现,为DSP系统的设计又提供了一种崭新的方法。利用CPLD或FPGA设计的DSP系
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved