本设计实例的由来是我未能获得那些用于检测电流的新IC。我需要一个容易搭建的分立电路,但仍要有与新IC相同的精度。这个电路似乎就能完成此任务。
Q2是第一个电流放大器,其增益为6.2(如图)。Q1是由IC1B控制的温度补偿放大器,IC1B使Q1集电极电压保持恒定,而不管电路的温度状况如何。电路的基准电压是系统5V电压。电路图上标注了所用的电压。
IC1A对Q1和Q2集电极电压做差动放大。运放增益为4.9。R3由两只上下互叠的表面安装功率电阻组成。电路在5V输出时有25A输入电流范围。这种结构非常适用于微处理器的模拟输入。
两只保护用齐纳二极管将电路与汽车的电路系统隔离开来。这一系统中已知有高达-90V的尖峰脉冲。
如果希望严谨,就使R6和R7匹配;要更严谨,让R1和R4也匹配。我没有做这一步,不匹配并不会影响电路的工作。所有电阻都是1%的0805型SMT,除R3以外。
注意你的PCB走线铜箔要有足够的宽度和厚度,有最大的电流承载能力,并且确保对R3采用Kelvin连接。本电路在25A下,触摸时略觉发热。
关键字:分立元件 高侧电流 差动放大
引用地址:
用分立元件检测汽车的高侧电流
推荐阅读最新更新时间:2024-03-30 22:32
采用分立元件的视频发射电路
电路如附图。视频信号先经过一级反相放大,再经射极跟随器输入到AM调制级;发射频率由LC高频振荡器产生后送至AM调制级,最后由天线发射已调制的无线电波。 图像放大级由三极管Tr1构成放大级。视频信号的振幅在75Ω负荷时约有1VP-P,在3V电 源电压下,本级增益为R2/R3=3.3(10dB),带宽约4MHz。VR1用于调整输入信号幅度,VR2用于调整调制偏置点。D1为钳位二极管,作用是在不同亮度的信号中保证取得完整的同步信号。缓冲级由三极管Tr2接成射极跟随器,其发射极电压跟随图像信号变化,同时也引起Tr4的电压变化,进行AM调制。高频振荡电路由Tr3构成柯尔毕兹振荡器,振荡频率由电容C7、C8、C9决定,要用温度补偿型的瓷
[模拟电子]
高侧电流传感器AD8205及其应用
AD8205是美国模拟器件公司推出的一种单电源高性能差分放大器,典型单电源供电电压为5V,其共模电压输入范围为-2~65V,可以耐受-5~+70V的输入共模电压,适用于高共模电压情况下检测小差分电压的工业设备中。它的增益固定为50V/V,工作温度范围为-40~+125℃,失调电压温漂小于15 μ V/℃,增益温漂小于30ppm/℃(环境温度可高达125℃),在整个规定温度范围内具有优良的直流性能,其从直流到100kHz的频带范围内具有高达80dB的共模抑制比。因此其测量环路误差小,精度高,非常适合用于马达控制、传动控制、磁悬浮控制、车辆动力控制、燃料喷射控制、引擎管理和DC-DC变换等控制系统中。 图1高侧电流传感器AD82
[模拟电子]
采用分立元件实现的PWM Buck三电平变换器
1 引言 J. Renes Pinheiro于1992年提出了零电压开关三电平DC-DC变换器 ,该变换器的开关应力为输入直流电压的一半,非常适合于输入电压高、输出功率大的应用场合。因此,三电平变换器引起了广泛关注,得到了长足发展。目前,三电平技术在已有的DC-DC变换器中,均得到了很好的应用。部分三电平DC-DC变换器在降低开关应力的同时,还大大减小了滤波器的体积,提高了变换器的动态特性。三电平技术的应用,充分体现了“采用有源控制的方式减小无源器件体积”的学术思想。 文献 详细分析了隔离与非隔离的三电平变换器的主电路拓扑结构。而本文是对PWM三电平变换器的控制电路进行分析和设计。文中采用比较器、运算放大器和RS触发器等分
[电源管理]
分立元件无稳态多谐振荡电路
分立元件无稳态多谐振荡电路 无稳态多谐振荡器是一种简单的振荡电路。它不需要外加激励信号就便能连续地、周期性地自行产生矩形脉冲.该脉冲是由基波和多次谐波构成,因此称为多谐振荡器电路。多谐振荡器可以由三极管构成,也可以用555或者通用门电路等来构成。用两只三极管组成的多谐振荡器,通常叫做三极管无稳态多谐振荡器。 在本例中我们将用两只三极管制作一个多谐振荡器,并用它驱动两只不同颜色的发光二极管。在制作完成时,我们能看到两只发光二极管交替点亮,并且我们可以通过调整电路的参数来调整发光管点亮的时间。 三极管多谐振荡器的电路原理图: 下面我们将简要分析该电路的工作原理: 上图所示为结型晶体管自激或称无稳态多谐振
[模拟电子]
分立元件设计的耳聋助听器方法
分立元件设计的耳聋助听器方法 一、工作原理 耳聋助听器的电路如图1所示,它实质上是一个由晶体三极管VT1~VT3构成的多级音频放大器。VT1与外围阻容元件组成了典型的阻容耦合放大电路,担任前置音频电压放大;VT2、VT3组成了两级直接耦合式功率放大电路,其中:VT3接成发射极输出形式,它的输出阻抗较低,以便与8Ω低阻耳塞式耳机相匹配。 驻极体话筒B接收到声波信号后,输出相应的微弱电信号。该信号经电容器C1耦合到VT1的基极进行放大,放大后的信号由其集电极输出,再经C2耦合到VT2进行第二级放大,最后信号由VT3发射极输出,并通过插孔XS送至耳塞机放音。 电路中,C4为旁路电容器,其主要作用是旁路掉输出信号中形成
[模拟电子]