分立元件设计的耳聋助听器方法

最新更新时间:2012-03-07来源: 互联网关键字:分立元件  助听器 手机看文章 扫描二维码
随时随地手机看文章

分立元件设计的耳聋助听器方法

一、工作原理
  
耳聋助听器的电路如图1所示,它实质上是一个由晶体三极管VT1~VT3构成的多级音频放大器。VT1与外围阻容元件组成了典型的阻容耦合放大电路,担任前置音频电压放大;VT2、VT3组成了两级直接耦合式功率放大电路,其中:VT3接成发射极输出形式,它的输出阻抗较低,以便与8Ω低阻耳塞式耳机相匹配。
  驻极体话筒B接收到声波信号后,输出相应的微弱电信号。该信号经电容器C1耦合到VT1的基极进行放大,放大后的信号由其集电极输出,再经C2耦合到VT2进行第二级放大,最后信号由VT3发射极输出,并通过插孔XS送至耳塞机放音。
  电路中,C4为旁路电容器,其主要作用是旁路掉输出信号中形成噪音的各种谐波成份,以改善耳塞机的音质。C3为滤波电容器,主要用来减小电池G的交流内阻(实际上为整机音频电流提供良好通路),可有效防止电池快报废时电路产生的自激振荡,并使耳塞机发出的声音更加清晰响亮。
二、元器件选择
  
VT1、VT2选用9014或3DG8型硅NPN小功率、低噪声三极管,要求电流放大系数β≥100;VT3宜选用3AX31型等锗PNP小功率三极管,要求穿透电流Iceo尽可能小些,β≥30即可。
  B选用CM-18W型(φ10mm×6.5mm)高灵敏度驻极体话筒,它的灵敏度划分成五个挡,分别用色点表示: 红色为-66dB,小黄为-62dB,大黄为-58dB,兰色为-54dB,白色>-52dB。本制作中应选用白色点产品,以获得较高的灵敏度。B也可用蓝色点、高灵敏度的CRZ2-113F型驻极体话筒来直接代替。
分立元件制作的耳聋助听器
  XS选用CKX2-3.5型(φ3.5mm口径)耳塞式耳机常用的两芯插孔,买来后要稍作改制方能使用。改制方法参见图2所示,用镊子夹住插孔的内簧片向下略加弯折,将内、外两簧片由原来的常闭状态改成常开状态就可以了。改制好的插孔,要求插入耳机插头后,内、外两簧片能够可靠接通,拔出插头后又能够可靠分开,以便兼作电源开关使用。耳机采用带有CSX2-3.5型(φ3.5mm)两芯插头的8Ω低阻耳塞机。
  R1~R5均用RTX-1/8W型碳膜电阻器。C1~C3均用CD11-10V型电解电容器,C4用CT1型瓷介电容器。G用两节5号干电池串联而成,电压3V。
分立元件制作的耳聋助听器
三、制作与使用
  
图3所示是该助听器的印制电路板接线图。印制电路板实际尺寸约为60mm×50mm。此印制板不必腐蚀,只要用小刀将不需要的铜箔割开揭去即可。电池夹可用尺寸约为20mm×8mm的长方形磷铜片4片,弯制成“L”形状,在底脚各打上一个小孔,用铜铆钉直接铆固在电路板上而成。
分立元件制作的耳聋助听器
  焊接好的电路板,装入尺寸约为64mm54×mm×18mm的精致塑料或有机玻璃小盒内。盒面板和上侧面,事先分别为话筒B、插孔XS开出受音孔和安装孔。装配好的耳聋助听器外形如图4所示。
分立元件制作的耳聋助听器
  本机调试很简单:首先,通过调整电阻器R2的阻值,使VT1集电极电流(直流毫安表串联在R3回路)在1.5mA左右;然后,通过调整R4阻值,使助听器的总静态电流(直流毫安表串联在电池G的供电回路),在10mA左右即可。因各人使用的驻极体话筒B参数有所以不同,有时R1的阻值也需要作适当调整,应调到声音最清晰响亮为止。
  使用时,一般将助听器置于使用者的上衣口袋内,注意话筒B的受音孔应朝外。戴上耳塞式耳机,并将插头插入助听器的插孔XS内,电路即自动通电工作;拔出插头,助听器即自动断电停止工作。

 注:本文介绍的助听器电路简单、材料容易获取,适合初学者学习制作时参考,同时也可用于轻度耳聋者临时配戴,建议耳聋患者到专门机构配备适合自己的助听器,以免因小失大!

关键字:分立元件  助听器 编辑:神话 引用地址:分立元件设计的耳聋助听器方法

上一篇:采用四运放LM324设计的高灵敏度声音探听器
下一篇:场效应管特性及单端甲类功放的设计

推荐阅读最新更新时间:2023-10-12 20:36

用于汽车自动空调的电源、电机驱动及分立元件方案
在当今的汽车设计中,空调已是标准的舒适性配置。从功能上讲,当今的汽车空调实际上是将加热、制冷及通风等功能一体化,成为汽车加热、通风空调(HVAC)系统(本文将简称为“汽车空调”)。从调节方式讲,汽车空调包括手动空调、半自动空调及自动空调。本文将专门围绕汽车自动空调进行探讨,介绍安森美半导体相应的电源供电、电机驱动及分立元件等方案,帮助设计人员选择适合的产品,用于汽车自动空调设计。 汽车空调系统包含加热及通风系统、空调制冷及电子控制单元(ECU)等不同子系统。在加热及通风子系统,新鲜空气从外部的管道通向车厢内部,提升乘客的舒适性及安全性。进入的空气流过小的发热芯,连接到发动机的冷却系统。空调制冷子系统则通过不断蒸发和冷凝,将车内
[嵌入式]
用于汽车自动空调的电源、电机驱动及分立元件方案
在当今的汽车设计中,空调已是标准的舒适性配置。从功能上讲,当今的汽车空调实际上是将加热、制冷及通风等功能一体化,成为汽车加热、通风空调(HVAC)系统(本文将简称为“汽车空调”)。从调节方式讲,汽车空调包括手动空调、半自动空调及自动空调。本文将专门围绕汽车自动空调进行探讨,介绍安森美 半导体 相应的 电源 供电、电机驱动及分立元件等方案,帮助设计人员选择适合的产品,用于汽车自动空调设计。 汽车空调系统包含加热及通风系统、空调制冷及电子控制单元(ECU)等不同子系统。在加热及通风子系统,新鲜空气从外部的管道通向车厢内部,提升乘客的舒适性及安全性。进入的空气流过小的发热芯,连接到发动机的冷却系统。空调制冷子系统则通过不断蒸发
[电源管理]
用于汽车自动空调的电源、电机驱动及<font color='red'>分立元件</font>方案
分立元件实现功放监测与控制
1 引言   基站即公用移动通信基站是无线电台站的一种形式,是指在一定的无线电覆盖区中,通过移动通信交换中心,与移动电话终端之间进行信息传递的无线电收发信电台。在无线基站中,功放(PA)决定了信号链在功耗、线性度、效率和成本方面的性能。通过对基站中的功放性能进行监测与控制,可以最大化地提高功放的输出,而同时又可获得最优的线性度和效率。本文将讨论使用分立元件的功放监测与控制解决方案,并介绍集成的解决方案。     2 使用分立元件进行功放控制   图1示出了使用LDMOS晶体管的基本功率级。在线性度、效率和增益之间固有的权衡考虑,确定了功放晶体管的最优偏置状态。通过对漏极偏流的控制,使其随温度和时间的变化而保持一个恒定的值,就可以极
[电源管理]
<font color='red'>分立元件</font>实现功放监测与控制
高灵敏度助听器电路
图中RP1为音频调节电位器,RP2为音量控制电位器,电阻R为外接负反馈电阻。电路中使用的是助听器专用微音器及高阻抗耳塞机,声音清晰,可供中、重度耳聋患者使用,采用一节7号电池供电,可以使用6个月以上。高灵敏度 助听器 电路:
[模拟电子]
高灵敏度<font color='red'>助听器</font>电路
用于无线助听器的预配置DSP方案Ayre SA3291
为满足家庭保健及人们对健康、保健设备兴趣增高的需求,安森美半导体针对中国市场为医疗应用提供了用于助听器的 预配置DSP及公开可编程DSP系统,帮助中国医疗电子产品制造商开发创新的高精度、可可靠性及低能耗医疗设备。同时,安森美半导体还提供配套软、硬件开发工具,协助客户实现芯片产品以外2次性开发,还有应用工程师团队为客户体供现场支持,帮助他们缩短设计周期,加快产品上市。 2012年全球预计销售近1200万部助听器,推动力来自于人口老龄化、更长预期寿命、更低出生率;新兴市场(中国、印度、巴西及东欧)收入上升;过渡噪声、糖尿病、耳毒性(某些处方药副作用)等疾病所致的听力减退病例蔓延。 助听器主要分耳背式(Behind The
[嵌入式]
用于无线<font color='red'>助听器</font>的预配置DSP方案Ayre SA3291
数控直流稳压电源设计
    随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,传统应用技术,由于功率器件性能的限制使开关电源性能的影响减至最小,新型的电源电路拓扑和新型的控制技术,可使功率开关工作在零电压或零电流状态,为了提高开关电源工作效率,设计出性能优良的开关电源,十分必要。     1 几种数控直流稳压电源设计方案比较     1.1 几种设计方案电路原理     方案1:采用模拟的分立元件,利用纯硬件来实现功能,通过电源变压器、整流滤波电路以及稳压电路,实现稳压电源稳定输出±5 V、±12 V、±15 V并能可调输出0~30 V电压,见图1所示。但由于模拟分立元件的分散性较大,各电阻电容之间的影响较大,因此所设计的指标不高、不符
[电源管理]
数控直流稳压电源设计
基于分立元件设计的开关降压稳压器
本电路输入电源范围宽、低压差、可根据输入电压自动调频调宽,最大脉宽100%,电路简单。效率高达90%以上,原理如图: 输入30V时Q1漏极的波形 网友yangxi : 厉害!这么漂亮的波形!我觉得这个电路有点像以前黑白电视机的12V稳压电路,我有两个问题想请教一下: 1.D2它是做什么用的? 2.这个电路的功率能做到多少? 请不吝指教!谢谢! 答:D2 是为了保护Q1栅源极电压不超过-12V而损坏。功率改改电路做多大都没问题。说句实话你说这电路象黑白电视机电源,还真和黑白电视机电源有点渊源呢,N 年前,我们那还没农网改造,晚上电压低到100V!黑白电视机无法看,我就把我们家黑白电视机变压器次级中心抽头不用,直
[电源管理]
基于<font color='red'>分立元件</font>设计的开关降压稳压器
TDK中国本社社长浅沼俊英解读如何赢在中国
日前,TDK在上海慕尼黑电子展期间举办了TDK技术和产品新闻发布会,TDK中国本社社长浅沼俊英先生出席发布会并为国内外众媒体介绍了TDK的现状、发展重点及未来的工作重心,并介绍了TDK在中国的一些具体情况。 TDK中国本社社长浅沼俊英 TDK发展及优势所在 浅沼俊英介绍道,TDK成立于1935年,至今已成立84年,总部位于日本东京。TDK目前业务遍及全球30余个国家,拥有200多个据点,其中包括工厂、销售据点、研发中心等。 浅沼俊英表示,TDK之所以可以屹立80余年历史,正是因为公司始终在变革,满足各种时代的不同需求。“我们的企业宗旨就是‘以丰富的创造力,回馈文化与产业’,经营理念是‘理想,勇气,信赖’,这是
[半导体设计/制造]
TDK中国本社社长浅沼俊英解读如何赢在中国
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved