一、引言 作为形位误差的主要测量手段,国内外现有的圆度仪以及在圆度仪基础上开发的形位误差测量仪器(如形状误差测量仪、形状测量系统等)比传统的测量仪器和测量方法能得到更准确的形位误差测量结果。然而在这些仪器的使用中,由于存在调整不当或不恰当地扩大其使用范围的情况,从而可能产生较大的测量误差。在对新型形位误差量仪的开发中,也存在不能按设计功能要求保证仪器相应部件制造精度和调整精度,或盲目追求高的制造精度,从而过度增加制造成本等问题。本文通过对形位误差量仪的系统误差和工件安装误差的分析,研究了这些误差因素对形位误差测量精度的影响,从而为在保证测量精度的同时降低测量成本以及形位误差量仪的开发提供了理论依据。 二、形位误差量仪的系统误差分析 现有的形位误差测量系统主要由机械部分、微机硬件部分和测量软件部分组成。 为保证数据处理精度,测量软件多采用双字节定点数运算或三字节浮点数运算方法,因此软件部分的精度一般不低于0.01%。微机硬件部分精度主要取决于前向通道的精度。通过对传感器装置、放大滤波电路、采样保持电路及A/D模数转换电路等各部分的技术特性分析,求出各部分电路的极限误差,并用高斯方法合成,可知硬件装置的误差总值不超过0.2%。因此,测量仪器的微机硬件和软件误差(不考虑数据处理的原理误差)很小,可忽略不计。测量仪器的测量精度主要取决于机械部分精度。 1.量仪的回转精度 在回转过程中,回转轴线对轴线平均位置的相对位移即为回转误差运动。误差运动使回转轴在每一瞬时发生平行或垂直于轴线的移动,前者称为端面误差运动,后者称为径向回转误差运动。 端面误差运动使被测工件一转内的采样点不全在一个横截面内,从而使各采样点间的相关性降低。但是,由于端面误差运动一般很小,而实际工件被测表面是平滑的,测头在被测表面采样时也不可能是纯粹的点接触,而是小面积接触,因此端面误差运动对测量精度的影响可以忽略。 转台式量仪的回转精度主要由量仪主轴回转精度决定,而顶尖装夹式量仪的回转精度则由量仪的顶尖精度和被测工件顶尖孔的形状精度共同决定。 径向回转误差δr将直接传递到采样数据Δri(i=1,2,3…n)中,进而影响最小二乘圆心坐标的计算精度。最小二乘圆心坐标表达式为[1] (1) 式中(a,b)为测量横截面最小二乘圆心坐标,θi为采样角度,R为平均圆半径,n为采样点数。可得 因此,径向回转精度是形位误差测量仪器最重要的精度指标。2.轴向导轨的直线度误差 (1)轴向导轨与回转轴线所在平面内的导轨直线度误差 此误差将1∶1地复映到测量结果中。但对于同一截面的采样数据,则只相当于存在一个定值误差ΔSr。若采取等间隔偶数点采样方式,由式(1)可知 同理,b′j=bj,因此该误差不会改变截面中心的位置。因此,对于采用符合相应误差定义的数据处理软件的形位误差测量仪器,此方向上的导轨直线度误差将会影响被测工件圆柱度误差、素线直线度误差的测量精度,但不会影响圆度、同轴度、轴线直线度误差的测量精度[2,3]。 (2)垂直于轴向导轨与回转轴线所在平面的导轨直线度误差 此误差ΔShj将使测头偏离径向方向,如图1所示,从而使测得的半径增量为 (4) 显然,ΔShj与r0相比极小,此项误差对测量精度的影响可以忽略。 如上节分析,垂直于轴向导轨与回转轴线所在平面的平行度误差属非敏感性误差,可忽略。下面仅分析在轴向导轨与回转轴线所在平面内的平行度误差的影响。 当量仪回转轴线与测头轴向移动方向不平行时,其平行度误差会1∶1地反复映到采样数据中。如图2所示,设导轨与回转轴线间的夹角为α,截面间距为Z,则在第k个截面上测头的压缩量为Δrz=kZtgα,显然,此平行度误差属线性系统误差,并且对于同一截面的采样数据,只相当于存在一个定值误差ΔSk,不会改变截面中心坐标的位置。因此,对于采用符合相应误差定义的数据处理软件的测量仪器,此项误差只影响圆柱度误差评定结果,不会影响圆度、同轴度、轴线和素线直线度误差的测量精度[2,3]。 若各采样点对最二乘圆的实际偏差为εij,则有[1] 因此有 式(7)中,daj,dbj为采样角度误差对该截面最小二乘圆心坐标的影响,由式(1)可得 由于被测表面是光滑的,测头与被测表面为小面积接触,因此当采样角度θij的误差较小时,对采样数据的影响d(Δrij)可以忽略。因此有 (9) 取采样点数n=128,当最大采样角度误差dθjmax=0.5°=0.009rad时,daj=dbj < 0.001Δrjmax。可见,采样角度误差对最小二乘圆心坐标的影响可以忽略。同样,忽略d(Δrij),将式(9)代入式(7)得 可见,采样角度误差对测量结果影响很小,可以忽略。 三、工件安装误差分析 工件的安装误差包括安装偏心误差和安装倾斜误差。 1.工件安装偏心误差 当采用解析评定法求解形位误差时,安装偏心量e对各采样点处的极径产生的误差为[1] 式中,R为被测工件半径。可见,只要保证一定的安装精度,在测量过程中不超量程,此项误差很小,可以忽略。 当采用记录轮廓图评定方式的传统圆度仪进行测量时,安装偏心量e造成的图形畸变误差为[4] 式中,M为记录轮廓图形的放大倍率。此时安装偏心量e引起的测量误差较大,不容忽略,通常应使e≤7%(R/M)。 2.工件安装倾斜误差 工件安装基面对轴线的垂直度误差或工件安装基面与工作台面间存在异物等均会造成工件安装倾斜误差。 为了便于分析,假定工件为直径为2R的理想圆柱,其轴线对回转轴线的倾斜角为γ,如图3所示。由于工件倾斜,其被测横截面轮廓为一椭圆,椭圆的长轴和短轴分别为2Rsecγ和2R,则因工件安装倾斜产生的测量误差为δt=R(secγ-1)。若设安装倾斜度高差t=0.1mm,R=25mm,则γ=0.115°,δt=0.05μm。因此,在保证工件倾斜量较小的条件下,δt可忽略不计。 因此,对采用解析评定数据处理软件的量仪,工件安装倾斜误差对形位误差评定结果影响不大,可以忽略;但对采用记录轮廓图评定方式的传统圆度仪,其记录轮廓图象为F=M2R(secγ-1),可见工件安装倾斜误差对测量结果影响较大,尤其是此倾斜误差还会影响各采样截面记录轮廓的中心位置,因此对各项形位误差的测量结果均有较大影响。 四、结论 形位误差测量仪器的精度主要取决于机械部分精度,其中回转精度是最重要的精度指标;轴向导轨的直线度误差将影响被测工件圆柱度误差、素线直线度误差的评定结果;轴向导轨对回转轴线的平行度误差主要影响圆柱度误差的测量精度。(end) |
上一篇:非接触式机器人测控系统的开发
下一篇:是德推出宽动态范围的USB和LAN功率传感器
推荐阅读最新更新时间:2024-03-30 22:48
高精度超声波微压差测量仪设计
0 引 言 对于微小压差的测最,传统的方法是采用U型管压力计,该压力计结构简单,价格便宜,性能可靠,缺点是无法记录压力的瞬态变化,读数慢而读数误差大,人工估读时,最大精度也只能精确到0.5 mm液柱高度。为了提高灵敏度,减小读数误差,随之又出现了倾斜管压力计,如果倾斜管压力计的测量管倾斜角为30°,则测量精度可提高1倍。 随着压力传感器技术的发展,近年来又出现了电子微压差传感器,可将微小压力直接转换成电信号输出。此类传感器使用方便,反应速度快,精度也可以做得较高,目前比较好的微压传感器测量分辨率已达到10 Pa左右。缺点是稳定性不够好,温漂和时漂都比较大,且价格昂贵。 上述微压测量方法各有利弊,如果要继续提高测量精度,以上测
[应用]
NI发布业界最高精度的PXI源测量单元
2016年7月11日 NI(美国国家仪器,National Instruments, 简称NI) 作为致力于为工程师和科学家提供解决方案来应对全球最严峻的工程挑战的供应商,近日宣布推出NI PXIe-4135源测量单元(SMU),其测量灵敏度达10 fA,输出电压高达200V。工程师可以使用NI PXIe-4135 SMU来测量低电流信号,并利用NI PXI SMU的高通道密度、高速的测试吞吐率和灵活性来实现晶圆级参数测试、材料研究以及分析低电流传感器和集成电路的特性等各种应用。 我们的顺序参数测试需要采集数百万个数据点,电流泄露通常在pA级。 IMEC研究人员Bart De Wachter博士表示, 在受益于PXI平台
[焦点新闻]
Xsens MTi-100系列UWB信标系统提供强大支持, 刷新测量精度标准
Xsens 宣布,车辆位置跟踪技术先锋 Racelogic 利用高精度 MTi-100 系列惯性测量装置 (IMU),在其新推出的 VBOX 室内定位系统 (VIPS) 产品中实现了行业最佳的室内精度。 Racelogic 开发的 VIPS 技术专用于测量超出全球定位系统 (GPS) 卫星信号覆盖范围的车辆或其他移动资产的位置。该技术采用的增强型 GPS/GLONASS 接收器可以在任何汽车运行条件下在室外实现 ±2 厘米的精度误差,现已在室内实现同等精度。 Racelogic 是 Xsens 的长期客户,自 2005 年以来一直在其产品中使用 Xsens 传感器。Racelogic 创始人兼总经理 Julian Thom
[嵌入式]
Maxim高精度测量IC,为IoT,医疗应用带来持久动力
Maxim Integrated Products, Inc (NASDAQ: MXIM)宣布推出三款新型基础模拟IC:MAX41400仪表放大器、MAX40108精密运算放大器和集成了MEMS振荡器的MAX31343实时时钟(RTC),帮助设计师将物联网(IoT)、工业和医疗健康产品的电池寿命提高至两倍,且具有可靠保护和最高精度。 设计 IoT和电池供电传感器时,工程师必须确保系统具有较长的电池工作寿命,同时提供实际电压、应力和压力等信号的高精度测量。苛刻的功率预算要求这些传感器一次性达到高精度测量,很难实施校准过程。此外,工业和物联网(IoT)应用要求这些传感器能够承受极端的
[嵌入式]
基于FPGA的高精度相位测量仪的设计
引言 随着集成电路的发展,利用大规模集成电路来完成各种高速、高精度电子仪器的设计已经成为一种行之有效的方法。采用这种技术制成的电子仪器电路结构简单、性能可靠、测量精确且易于调试。本文采用Altera CycloneII系列FPGA器件EP2C5,设计了高精度相位测量仪。测量相位差所需的信号源在FPGA内部运用DDS原理生成,然后通过高速时钟脉冲计算两路正弦波过零点之间的距离,最后通过一定的运算电路得到最终相位值,测相精度为1°。 图1 相位测量仪硬件结构图 图2 基于DDS的数字移相信号发生模块框图 图3 控制模块顶层原理框图 图4 相位测量模块原理框图 系统硬件设计 该基于FPGA的相位测量仪,硬件
[测试测量]
基于网络分析仪的低噪声放大器精度测量
现在很多单位从事于低噪声放大器(LNA)的设计工作,而且要求LNA有较低的输入功率,有时输入功率甚至小于-60dBm。针对这样的LNA,要想准确地测量它的四个S参数,将变得十分困难。但是合理地设置网络分析仪每个输出端口的功率、中频带宽和衰减器以及高精度校准,就可以准确地测量LNA的四个S参数。这篇论文以安捷伦PNA-X网络分析仪为例,讲述如何提高LNA的测量精度。
[模拟电子]
基于数字移相的高精度脉宽测量系统及其FPGA实现
在测量与仪器仪表领域,经常需要对数字信号的脉冲宽度进行测量.这种测量通常采用脉冲计数法,即在待测信号的高电平或低电平用一高频时钟脉冲进行计数,然后根据脉冲的个数计算待测信号宽度,如图1所示.待测信号相对于计数时钟通常是独立的,其上升、下降沿不可能正好落在时钟的边沿上,因此该法的最大测量误差为一个时钟周期.例如采用80MHz的高频时钟,最大误差为12.5ns. 提高脉冲计数法的精度通常有两个思路:提高计数时钟频率和使用时幅转换技术.时钟频率越高,测量误差越小,但是频率越高对芯片的性能要求也越高.例如要求1ns的测量误差时,时钟频率就需要提高到1GHz,此时一般计数器芯片很难正常工作,同时也会带来电路板的布线、材料选择
[测试测量]
提高气体超声流量计测量精度的方法
内容说明 本发明属于流量测量技术领域,涉及气体超声流量计。 发明背景 超声流量计作为一种新兴的流量仪表近十几年发展迅速,在大型的水利水电项目及天然气贸易结算领域已有广泛应用,其中时差法超声流量计作为计量仪表应用最多。相比液体超声流量计,气体超声流量测量的精度更难保证,涉及的技术问题更多,这与气体介质的特殊性和流动的复杂性密不可分:气体密度较小,分子间距较大,超声波在传播过程中衰减严重,因此接收信号不易检测。加之气体流动的湍流脉动较大,流动噪声叠加在超声波有用信号上,一方面加剧了传播时间的检测难度,另一方面降低了测量的稳定性。在这方面,学者们通过改进硬件电路设计,引入数字信号处理等方法,提高气体超声流量计的测量精度,取得了许多有
[测试测量]
- 热门资源推荐
- 热门放大器推荐
最新测试测量文章
更多精选电路图
更多热门文章
更多每日新闻
更多往期活动
- 【开发板试用】89美金FPGA开发板试用风暴来袭!
- ST SensorTile物联网开发套件来啦!免费申请抢鲜体验等你来~
- 是德科技有奖直播:示波器基础培训
- 下载有礼:一起初探5G,赢氮化镓(GaN)充电器、柔性墨水屏等精美礼品
- 免费样片体验:EEworld邀你一起玩转TI 运放新秀-OPA388
- TI 中国大学计划20周年——写祝福送好礼!
- 来聊聊你与MP3的情缘吧!——MP3播放板等你拿
- 秀创意!免费试用LPC1114F 进行中...
- Keysight感恩月:每天送出一台示波器,一次注册即可参与
- 【1月14日 技术直播】工程师请就位,Keysight计量专家开讲啦 ~电子仪器计量校准基础知识与校准周期探讨
厂商技术中心
随便看看