实现电压非接触稳定测量

发布者:rnm888最新更新时间:2014-12-02 来源: 实现电压非接触稳定测量 关键字:电容耦合  高阻抗  非接触  电压测量 手机看文章 扫描二维码
随时随地手机看文章

在复合材料特性检测、电路电气特性检测、人体心电检测、核磁共振等方面需要对物体表面电压进行精确测量。传统上电压的检测都需要与物体直接接触,通过传导电流来完成。该种电压测量方法无法测量空中电压的变化,即使测量物体表面电压,这种接触测量方式也有许多缺点。例如,接触测量心电信号时,电极需要利用导电膏与皮肤直接接触,容易引起皮肤过敏,造成皮肤不适;接触测量电路时延特性时,由于测量电路的接人,改变了原有电路的传输特性,从而改变了时延,使测量不准确。接触测量物体表面的电压不仅操作麻烦而且有一定的危险性。为了克服接触电压测量的这些缺点,满足对物体表面电压非接触测量的需要,文中设计了一种新型便携式电压检测系统。该系统基于电容耦合原理,前端前置电路通过运用保护、自举、有源屏蔽等反馈技术,有效地提高了其输入阻抗,从而使该系统对物体表面电压测量时相当于一个理想的电压表,不需要与物体表面直接电气接触,利用位移电流即可完成电压的有效测量。


1非接触电压测量原理

非接触电压测量的原理类似于磁力仪测量磁场,不需要直接电气连接,通过电容耦合,利用位移电流来测量物体表面或自由空间的电压。将传感器电极放在电场中,感应电极与信号源之间将形成耦合电容,通过耦合电容信号源经过测量系统与地之间将构成一个分压电路,如图1所示。



图1非接触电压铡量原理图


设信号源的电压为Vs由分压公式可得,在运放输入端的电压可表示为:

如果传感器前置放大电路的放大倍数为Av,输入电阻和输入电容分别为Rin和Cin则传感器的输出可表示为:

由式(2)可知,当耦合阻抗与系统输入阻抗相比可忽略不计时,系统相当于一个具有理想特性的电压计,可有效测量电压信号。因此,为了提高系统的灵敏度,在系统设计过程中,应该采用反馈等技术提高系统前端传感器的输入电阻,降低输入电容。通过测量空中两点电压的大小,根据电压与电场的关系,可以推导出空中电场的情况。

2系统设计

系统采用低功耗的MSP430F5529单片机作为控制器,通过敏感电极将信号以位移电流的形式采集到系统,然后进入前置放大电路,经过放大处理后输出给模数转换电路,模数电路将转换后的信号通过蓝牙无线传输给上位机进行显示。因为系统输入阻抗的大小直接关系到灵敏度,因此,在整个系统设计中,敏感电极和前置放大电路的设计是关键和难点,系统的结构框图如图2所示。



图2非接触电压测量原理图


2.1敏感电极

该敏感电极由感应层,有源屏蔽层和接地屏蔽层三层结构构成,通过三同轴电缆与后面前置放大电路连接。感应层和有源屏蔽层由直径为3.5 cm的标准双面印刷电路板构成。电路板的一面被覆铜作为感应层,感应层外围的一圈覆铜与印刷电路板的背面相连构成有源屏蔽层,最外层的金属壳作为接地屏蔽层。整个电极的直径为3.7 cm,厚度为0.5 cm.电极的结构如图3所示。



圈3电极结构圈



2.2前置放大电路

为了提高系统输入阻抗,有效测量空间或者物体表面微弱电压信号,在前置放大电路设计过程中采用了保护、自举、有源驱动屏蔽和接地屏蔽技等技术,结构原理图如图4所示。前置放大电路通过三同轴电缆从前端敏感电极获得感应信号,经过放大后输出给后面的信号处理电路。电路设计以高性能的静电型运算放大器AD549(图中A1)为核心,该运放具有超高的输入阻抗、极低的输入电容和低的输入噪声,完全满足非接触电压测量的需要。前置放大电路工作需要稳定的直流工作点,偏置电路能够为运放提供稳定的直流工作点,但偏置电路的引入也降低了系统的输入电阻,因此需要利用反馈技术在不显著降低输入阻抗的条件下为前置放大电路设计偏置电路。设计中考虑到R1和R2对偏置电路阻抗和噪声的影响,经过折中考虑,采用2个阻值为100 MΩ的电阻通过正反馈构成自举结构来形成偏置电路,如前置放大电路原理图所示。偏置电路的等效输入阻抗可用下面公式表示:

从式(3)可知自举结构的运用极大的提高了传感器的等效输入阻抗。为了减小传输线上的等效寄生电容,提高了输入阻抗,并减少了信号传输损耗。为减小运算放大器输入电容,在前置放大电路设计过程中采用了电容抵消技术,如原理图所示,电容Cf和电位器Rp构成输入电容抵消结构,该结构的运用使得运放的等效输入电容降低为:

式中μ是电位器的正反馈系数。

从式(4)可以看出,经过精确调节,选择合适参数,输入电容抵消结构能够有效降低运放的等效输入电容,增大系统输入阻抗。高性能运算放大器和新型反馈技术的运用使系统具有极高的输入阻抗,能够有效的耦合空间微弱电压信号。[page]



圈4前置放大电路原理圈

2.3控制器和模数转换


系统采用16位单片机MSP430F5529作为控制器,该单片机采用了精简指令集结构,具有较低的供电电压,并且具有3个时钟,每个时钟都可以在指令控制下打开与关闭,这些特点使其具有极低的功耗,非常适合便携式检测设备对低功耗的要求。

因为检测的是微弱电压信号,为了提高系统的分辨率,采用24位宽频带AD转换芯片ADSl271构成模数转换电路。该芯片通过单电源供电,采用外部参考电压,输入端采用差分输入。因为系统测量的是低频交流电压信号,为了使信号满足AD转换芯片输入端电压的要求,在模数转换之前设计了一个电压提升电路。该电压提升电路由差分驱动芯片AD8131构成,其作用是将测量到的交流信号叠加一个2.5 V的直流偏移。叠加2.5 V的直流偏移不仅使信号满足了芯片输入端对电压的要求,而且增大了电压的测量范围。

2.4软件设计

系统采用模块化程序设计,使用了多个子程序,包括AD初始化程序、延时程序、软件滤波程序、无线传输程序、上位机显示程序等,完成了信号采集、信号处理、信号传输,信号显示等功能。系统流程图如图5所示,主控制模块负责协调控制整个系统的运行,采用调用原则将需要的模块调入运行;AD转换模块负责完成信号的模数转换;无线传输模块完成单片机与上位机的信号传输;上位机显示模块完成信号的初步处理及显示。



图5前置放大电路原理图


3测试结果及分析

为了对系统性能进行测试,文中设计了一种电压测试平台,如图6所示。该平台主要由聚四氟乙烯支撑架、铝金属板、绝缘支撑板三部分组成。聚四氟乙烯三根支撑柱上设计了多个等距离的间隙,用于放置极板和支撑板,并且方便板间距离的计算。以2片直径为80 cm的圆铝金属板作为电极极板,连接到信号发生器两端,用来产生电场。图中中间3片是绝缘支撑板,测量时将感应电极粘附在支撑板上,因此支撑板到极板的距离就是测量电极到极板的距离。将两极板相距30cm,上极板接信号发生器正电压输出端,下极板接负电压输出端并接地,感应电极距离上极板为25 cm,在两极板上加一个幅值为500mV,频率为2 Hz的正弦信号,测得的波形结果如图7所示。由图中可以看出,利用该系统通过非接触方式可以测得波形清晰,将测得的数值乘以标定系数后能够反映极板的电压。通过改变极板间不同的电压,可以测得系统的灵敏度和线性度。



图6电压测试平台

图7测试结果图


4结束语

文中对基于电容耦合原理的非接触电压检测方法进行了阐述,重点介绍了具有超高输入阻抗的前置放大电路设计,完成了包括敏感电极和信号处理、传输、显示等模块在内的系统设计。该系统结构简单、灵敏度高,频带宽,实现了对电压的非接触测量,在医疗、安全、无损检测、人机交互等方面拥有广阔的应用空间。

关键字:电容耦合  高阻抗  非接触  电压测量 引用地址:实现电压非接触稳定测量

上一篇:工业运动控制中的测量技术
下一篇:基于高速PCB互连设计中的测试技术讲解

推荐阅读最新更新时间:2024-03-30 22:50

怎样采用指针式万用表间接测量单相交流电压
如果所测单相交流电压在万用表的量限范围之外,则采用接入电压互感器的测量方法,如图5-3(b)所示。电压互感器一次侧绕阻接单相交流电源,二次侧绕组接万用表,但不允许二次侧绕组短路。
[测试测量]
怎样采用指针式万用表间接<font color='red'>测量</font>单相交流<font color='red'>电压</font>?
如何准确测量CAN节点的输入电压阈值
CAN总线设计规范对于CAN节点的输入电压阈值有着严格的规定,如果节点的输入电压阈值不符合规范,则在现场组网后容易出现不正常的工作状态,各节点间出现通信故障。具体要求如表1所示,为测试标准“ISO 11898-2输出电压标准”。   表 1  ISO 11898-2输入电压阈值标准   所以每个厂家在产品投入使用前,都要进行CAN节点DUT(被测设备)的输入电压阈值测试。一般是使用ISO 11989-2输入电压阈值标准的CAN测试方法,如下描述: 如表1所示负载和共模条件下,选择被测DUT的适应条件,如图1所示,Rtest为网络负载电阻,为60Ω。 调节U,使V分别为-2V和6.5V时,再调节I,使在Vd
[嵌入式]
用ADuC812设计超声波接触液位计
    摘要: 阐述了超声波非接触液位计测量的原理,给出了硬件电路和软件编程的设计方法,对其应用也作了简单介绍。     关键词: ADuC812芯片、超声波、液位、非接触 1.概述     随着电子技术、计算机技术以及大规模集成电路芯片技术的飞速发展,超声测距技术也日臻成熟。于九十年代初,国内开始将超声测距技术应用于河流、湖泊、水、渠等水体的水位测量中及其油、浆等液体的液位测量之中,并开始发挥其重要作用。     ADuC812是ADI公司99年开发面市的新一代、带有嵌入式闪速MCU的多通道12位A/D转换器,用ADuC812作为核心,加上超声波发、收电路以及存储、显示等电路所组成的超声
[测试测量]
普通直流电压测量电路图解
电量测量中的很多电参数,包括电流、功率、信号的调幅度、设备的灵敏度等都可以视作电压的派生量,通过电压测量获得其量值。 电压的测量可分为模拟和数字两种方法。前者采用模拟式电压表显示测量结果,后者采用数字电压表即以数字显示器显示测量结果。两者的区别仅在于后者用a/d转换器和数字显示器取代了前者的模拟显示电表部分。两者前端部分的工作原理基本相同。模拟式电压表的优点是结构简单,价格便宜,测量频率范围较宽;缺点是精度、分辨力较低,不便于与计算机组成自动测试系统。数字式电压表则正好相反。 (1) 图1 普通直流电压表电路
[测试测量]
普通直流<font color='red'>电压</font>表<font color='red'>测量</font>电路图解
新型六位半数字电压测量模块助力突破工业精密测量边界
俗话说“差之毫厘,谬以千里”,在当下精密工业领域,仪表测量的精确性直接影响生产过程中的自动化控制水平及设备工作的安全可靠性。电压,作为电力系统中的基本参数之一,如何借助小尺寸且易于系统集成的高可靠性单元实现精确测量,成为众多领域客户提出的创新性需求。作为全球领先的半导体技术提供商, ADI开创性推出了新型六位半数字电压测量模块,大大降低了实现精确电压测量的门槛。 多种场景下的高精度电压信号采集挑战如何破? 事实上,无论是在电子系统设计中进行电压采样和功耗测试,还是在半导体自动化测试过程中控制和监测输入电压以保障测试的精确度,或是在实验室环境中利用数字电压测量单元确保实验结果的精确性和可重复性,高精度电压信号的采集在多领域
[测试测量]
新型六位半数字<font color='red'>电压</font><font color='red'>测量</font>模块助力突破工业精密<font color='red'>测量</font>边界
接触公交IC卡读写器的应用设计
一、IC卡读写器概述   目前经常接触到的IC卡有两种:接触式的和非接触式的IC卡。接触式的IC卡通过机械触点从读写器获取能量和交换数据;非接触式IC卡通过线圈射频感应从读写器获取能量和交换数据,所以又称射频卡。目前在社会上常见的是接触式IC卡。它具有存储量大(以兆为单位),保密功能强(有多重密码设置和认证功能),可实现一卡多用。但是,这类卡的读写操作速度较慢,操作也不方便,每次读写时必须把卡正确地插入到读写器的口槽才能完成数据交换,这样,在公交、考勤等需要频繁读写卡的场合就很不方便,而且读写器的触点和卡片上IC卡的触脚暴露在外,容易损坏和搞脏而造成接触不良。   非接触式IC卡是根据射频电磁感应原理产生的。它的读写操作只需将
[单片机]
<font color='red'>非</font><font color='red'>接触</font>公交IC卡读写器的应用设计
接触实现触摸的uWand技术解析
  轻轻动下手腕,就可浏览频道、停止/继续播放,也可以录制视频、访问网站。 Philips 的 uWand技术 正在把 触摸 技术应用延伸到起居室。   据Philips的 uWand 总经理 Navin Natoewal 介绍,uWand技术是一项具备3D功能的直接定点遥控技术,操控直观犹如多点触摸屏。采用uWand技术的 遥控器 在指向屏幕时,会在屏幕上产生一个光标,使用者借助光标便可控制:点击想要看的频道,屏幕会切换至所需频道;遥控器向左或向右移动,则可以调整音量和色彩。   uWand可以直接与多种设备进行互动(只需定位并点击),如电视机、机顶盒、DVD机、个人电脑、硬盘录像机、数码相框及游戏操纵板。同时,uWand
[家用电子]
<font color='red'>非</font><font color='red'>接触</font>实现触摸的uWand技术解析
高频电压与电流的测量方法
1、高频电压的测量 为了分析电压表对被测电路的影响,我们来研究电压表的等效电路。电压表的ci越大,回路的c越小,引起回路失谐越严重;输入电阻ri并联在回路上,它将改变其工作状态,ri越小,工作状态改变越显著。 2、用于高频测量的电压表电压,应具有如下特性 (1)在宽频段内,读数同被测电压的频率关系不大。 (2)对被测源工作状态的影响小。换句话说,输入电阻要大(输入电容小)。 (3)测量电压的范围宽,灵敏度高。 (4)读数建立时间短。 (5)有承受过载的能力(电压表的输入端的电压超过允许值)。 3、高频电流的测量 【例】 电流表要接在最底点位处,接在引起被测电路反作用最小的地方。
[测试测量]
高频<font color='red'>电压</font>与电流的<font color='red'>测量</font>方法
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved