示波器操作人员有时会发现这样一个现象:使用探头探测信号时,被测信号上下跳动,波形不正常,如果使用余晖显示,则波形糊成一团,如下图所示:
通常这种情况下,测试人员会怀疑是触发的问题,但当上下调节触发电平时,波形位置会随着触发电平的变化:如触发电平调高,则波形的位置上升,触发电平调低,波形位置又降低,如下图所示:
如果您在工作中也发现类似现象,则很大的可能是:您的测试存在接地不良的情况。更准确地说是:您测试系统的信号回流路径过长。
我们都知道,从信号发送器流出的信号,都会最终流回发送器。单端信号的“地”是信号的回流路径;而差分信号的回流路径比较复杂一些,差分对的正负端是依靠公共的参考来回流的。所以在测试中,如果单端探头的地线没有有效连接;或差分探头的正负端中的任何一端没有有效连接,以及示波器的参考“地”没有能和被测件的地连接,则通过探头馈入示波器的信号就无法通过正常的路径回流,而必须经过供电设备(如开关电源、电力网络等)回流,因而受到供电设备的影响,从而可能出现上面几幅图的情况。
在上图的例子中,当我们把时基增大到10mS/div的时候,看到如下图形,发现信号有明显的周期性,简单地使用光标测量,发现周期为20ms左右,则可以大致确定信号受到了工频的干扰。在一些复杂干扰的实例中,测试人员可以使用示波器的FFT工具来查找干扰的来源,以确定是否是接地不良带来的工频干扰或开关电源干扰。
发现问题以后,重新接好地线,波形恢复正常,原来这是一个10MHz左右的时钟信号。问题解决,如下图所示:
小结:这是一个测试中常见的小问题,有经验的工程师都可以很容易地解决。就这个小问题,测试人员可以注意以下细节:
- 使用探头测试时,一定要注意信号回流路径,如果发现波形上下跳动,就需要考虑接是否是接地线异常;
- 信号回流路径尽可能短;或者如果考虑地线和信号线形成的一个闭合面,这个面的面积需要尽可能小;
- 测试准备工作中,单端探头测试时可以使用接地线(带鳄鱼夹或香蕉头的导线)将被测信号的参考点与示波器的外壳(也就是示波器的“地”)连接起来;差分探头测试时应该将示波器和被测设备共地。如果示波器和被测设备使用同一个接地良好的电源插线板,则这一步一般可以省去。浮地测试等情况比较复杂,应具体情况具体分析;
- 地线未能可靠连接或差分探头一端悬空的情况在高压、浮地测试中十分危险,应严格避免。即使在普通差分信号的测试中,如果差分探头一端悬空,当被测信号的差模电压+共模电压超过了差分探头的差模测试范围,也可能损坏探头;
关键字:示波器测量 不良接地 电源干扰
引用地址:
示波器测量的一个常见小问题——不良接地时的电源干扰
推荐阅读最新更新时间:2024-03-30 22:59
新日本无线开发抗EMI干扰的电源运算放大器
汽车ECU上的各种传感器强烈要求要有电磁波噪声抑制特性(抗EMI干扰性能),对于处理这些传感器的模拟信号,新日本无线开发了拥有业界顶级水准抗EMI干扰性能的单电源工作车载用途的2/4电路运算放大器NJM2904B/NJM2902B产品。 新开发的产品在继承了业界标准运算放大器NJM2904/NJM2902的通用性的基础上,大大提高了抗EMI干扰性能。对于从汽车车身到动力传动系统所有的汽车ECU设计,可以降低从头开始设计的风险,减少EMC设计工时,规避更换部件时的风险,大幅度提高设计质量。 『实现了业界顶级水准的抗EMI干扰性能』 ●运用国际电工委员会IEC制定的 62132-4, ED-5008 通用标准DPI测试方
[汽车电子]
使用示波器进行功率测量时必须知道的 7 大秘诀
尽量扩大测量动态范围 1) 通过计算平均值提高测量分辨率 2) 使用高分辨率采集提高测量分辨率 3) 使用交流耦合去除直流偏置 4) 使用示波器和探头限制带宽 在探测中优化信号完整性 5) 使用差分探头进行安全、精确的浮置测量 6) 避免探测耦合了辐射功率的附件 7) 选择避开示波器最灵敏设置的探头 第 1 个秘诀 通过计算平均值提高测量分辨率 在某些功率测量应用中,您需要测量大动态范围的值,同时还需要细致地调整分辨率,以测量参数的微小变化。除了使用高分辨率数字转换器之外,您也可以使用其他采集方法来降低随机噪声,增加测量的有效动态范围。例如求平均值和高分辨率采集。 求平均值要求测量的是重复信号。该算法对跨越多次采集的各时
[测试测量]
示波器探头测量原理
在进行电子制作的时候,我们免不了要使用各种各样的测试仪器,而其中比较常用的的一种就是示波器了。使用示波器的时候,我们使用探头来测量时间、频率和电压值等物理量。但是你是否有想过,探头是如何测量这些物理量呢? 探头利用高阻抗的特性来保证电路不受到测量部分的干扰,但有些时候我们需要以低阻抗的测试方式来对某些电路进行测量。比如50欧姆阻抗的射频输出电路,对于有50欧姆阻抗测量功能的机器来说,这就是按一下按键的问题;但是对于普通的示波器来说,这时候探头就不适合测量了。你需要用BNC三通和50欧的末端电阻来进行匹配,并在另一端直接连接到50欧姆的输出端。 对于很多爱好者来说,这些内容都是非常简单却又很少去思考的问题。其实我们身边的测量仪
[测试测量]
简述两种示波器测量眼图的差别
简述两种示波器测量眼图的差别 中心议题: 力科示波器进行眼图测量 新旧两款软件包使用方法不同 力科示波器捕获了50MS的数据,并一次性地对所有这些数据进行眼图测量,得到了18.73449M个比特位(UI)的眼图。如下图所示。 XXK的示波器捕获了574996个比特位(UI),但一次只能对这些UI中的8000个UI做眼图测量。如下图显示了“UIs:8000:574996,Total:8000:574966 ”。 如何才能对捕获到的所有的数据做眼图呢? 这是个问题。 如果您在使用的是XXK的老软件包RT-EYE,那么您需要在C:\下的某个文件夹中找到某个tdsrt-eye文件进行手工修改,去掉这个
[模拟电子]
示波器测量之带宽与采样率
在具体测试过程中,示波器到底选择多少带宽比较合适呢? 首先,看下面的实例。 从上图可以看出,带宽越大,所能显示的信号频率分量越丰富,也就能更加接近真实的信号波形。 1、示波器带宽的精确计算 可按照以下步骤来完成计算: a、判断被测信号的最快上升/下降时间 b、判断最高信号频率f f = 0.5/RT (10%~90%) f = 0.4/RT (20%~80%) c、判断所需的测量精确度 所需精确度 高斯频响 最大平坦频响 20% BW=1.0*f BW=1.0*f 10% BW
[测试测量]
如何减少示波器测量的死区时间
很多客户在选择示波器的时候除了关注带宽、采样率和存储深度外,更关心的就是示波器的死区时间,死区时间的长短直接决定了捕获异常信号的能力大小。示波器的死区时间具体是多少,怎么去计算呢,答案即将揭晓。 1、采样时间、死区时间和捕获时间 数字示波器捕获信号的过程是典型的“采集-处理-采集-处理”过程,如图1所示为数字示波器的采集原理,一个捕获周期由采样时间和(处理时间)死区时间组成,如图2所示。 图1 示波器采集原理图 采样时间:是信号采样存储的过程。 死区时间(处理时间):是示波器对采样存储回来的数字信号进行测量运算,显示等处理的过程。死区时间内示波器不进行采集。 图2 采样时间与死区时间 所以:捕获时间=采样时间+死区时间
[测试测量]
如何养成使用示波器测量好习惯?
我们所了解的示波器探头上有一个X1档的X10档选择的小开关。当我们选择X1档时,信号是没经衰减进入示波器的。而选择X10档时,信号是经过衰减到1/10再到示波器的。因此,当使用示波器的X10档时,应该将示波器示波器上的读数扩大10倍(有些示波器,在示波器端可选择X10档,以配合探头使用,这样在示波器端也设置为X10档后,直接读数即可)。当我们要测量较高电压时,就可以利用探头的X10档功能,将较高电压衰减后进入示波器。 另外,X10档的输入阻抗比X1档要高得多,所以在测试驱动能力较弱的信号波形时,把探头打到X10档可更好的测量。但要注意,在不甚明确信号电压高低时,也应当先用X10档测一下,确认电压不是过高后再选用正确有量程档测量,养成
[测试测量]
高分辨率示波器的低失真测量
用PicoScope 4262高分辨率示波器来进行故障查询及测试。 基本的故障查询 PicoScope4262是一款高分辨率示波器,它非常适用于一般情况下的故障查询。有两个输入通道,可以在同一时间内显示信号在时域和频域内的视图。光谱视图中提供了自动测量的一些数据,包括失真度和噪声。 动态范围 在大多数的数字示波器中,从模拟到数字的转换器都只有8位分辨率,可产生256个量化水平。这相当于是一个理想的48dB的动态范围。PicoScope4262有一个16位分辨率模拟到数字的转换器,可以产生65536个量化水平,动态范围增加到96dB。 96dB是理论中的最佳值,但在实际中,采集系统中会有一些噪音,
[测试测量]