示波器的使用概述

发布者:buzzedy最新更新时间:2016-03-24 来源: eefocus关键字:示波器  使用概述 手机看文章 扫描二维码
随时随地手机看文章
示波器的使用概述

 

示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图象,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。

示波器使用方法

  本节介绍示波器的使用方法。示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。这些示波器用法大同小异。本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。 
  1 荧光屏
  荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。 
  2 示波管和电源系统
  (1).电源(Power)
  示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。 
  (2).辉度(Intensity)
  旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。
  一般不应太亮,以保护荧光屏。
  (3).聚焦(Focus)
  聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。
  (4).标尺亮度(Illuminance)
  此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。 
  3 垂直偏转因数和水平偏转因数
  (1).垂直偏转因数选择(VOLTS/DIV)和微调
  在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。
  踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从 5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。
  每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是0.2V/DIV。
  在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。
  (2).时基选择(TIME/DIV)和微调
  时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在1μS/DIV档,光点在屏上移动一格代表时间值1μS。
  “微调”旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔出后处于扫描扩展状态。通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的时间值等于

2μS×(1/10)=0.2μS

  TDS实验台上有10MHz、1MHz、500kHz、100kHz的时钟信号,由石英晶体振荡器和分频器产生,准确度很高,可用来校准示波器的时基。
  示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。
  示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。 
  4 输入通道和输入耦合选择
  (1).输入通道选择
  输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“×1”位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“×10"位置时,被测信号衰减为1/10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。
  (2).输入耦合方式
  输入耦合方式有三种选择:交流(AC)、地(GND)、直流(DC)。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含有直流成分的交流信号。在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值。 
  5 触发
  第一节指出,被测信号从Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。由此可知,正确的触发方式直接影响到示波器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。
  (1).触发源(Source)选择
  要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。触发源选择确定触发信号由何处供给。通常有三种触发源:内触发(INT)、电源触发(LINE)、外触发EXT)。
  内触发使用被测信号作为触发信号,是经常使用的一种触发方式。由于触发信号本身是被测信号的一部分,在屏幕上可以显示出非常稳定的波形。双踪示波器中通道1或者通道2都可以选作触发信号。
  电源触发使用交流电源频率信号作为触发信号。这种方法在测量与交流电源频率有关的信号时是有效的。特别在测量音频电路、闸流管的低电平交流噪音时更为有效。
  外触发使用外加信号作为触发信号,外加信号从外触发输入端输入。外触发信号与被测信号间应具有周期性的关系。由于被测信号没有用作触发信号,所以何时开始扫描与被测信号无关。
  正确选择触发信号对波形显示的稳定、清晰有很大关系。例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。
  (2).触发耦合(Coupling)方式选择
  触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。这里介绍常用的几种。
  AC耦合又称电容耦合。它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。通常在不考虑DC分量时使用这种耦合方式,以形成稳定触发。但是如果触发信号的频率小于10Hz,会造成触发困难。
  直流耦合(DC)不隔断触发信号的直流分量。当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。
  低频抑制(LFR)触发时触发信号经过高通滤波器加到触发电路,触发信号的低频成分被抑制;高频抑制(HFR)触发时,触发信号通过低通滤波器加到触发电路,触发信号的高频成分被抑制。此外还有用于电视维修的电视同步(TV)触发。这些触发耦合方式各有自己的适用范围,需在使用中去体会。
  (3).触发电平(Level)和触发极性(Slope)
  触发电平调节又叫同步调节,它使得扫描与被测信号同步。电平调节旋钮调节触发信号的触发电平。一旦触发信号超过由旋钮设定的触发电平时,扫描即被触发。顺时针旋转旋钮,触发电平上升;逆时针旋转旋钮,触发电平下降。当电平旋钮调到电平锁定位置时,触发电平自动保持在触发信号的幅度之内,不需要电平调节就能产生一个稳定的触发。当信号波形复杂,用电平旋钮不能稳定触发时,用释抑(Hold Off)旋钮调节波形的释抑时间(扫描暂停时间),能使扫描与波形稳定同步。
  极性开关用来选择触发信号的极性。拨在“+”位置上时,在信号增加的方向上,当触发信号超过触发电平时就产生触发。拨在“-”位置上时,在信号减少的方向上,当触发信号超过触发电平时就产生触发。触发极性和触发电平共同决定触发信号的触发点。 
  6 扫描方式(SweepMode)
  扫描有自动(Auto)、常态(Norm)和单次(Single)三种扫描方式。
  自动:当无触发信号输入,或者触发信号频率低于50Hz时,扫描为自激方式。
  常态:当无触发信号输入时,扫描处于准备状态,没有扫描线。触发信号到来后,触发扫描。
  单次:单次按钮类似复位开关。单次扫描方式下,按单次按钮时扫描电路复位,此时准备好(Ready)灯亮。触发信号到来后产生一次扫描。单次扫描结束后,准备灯灭。单次扫描用于观测非周期信号或者单次瞬变信号,往往需要对波形拍照。
  上面扼要介绍了示波器的基本功能及操作。示波器还有一些更复杂的功能,如延迟扫描、触发延迟、X-Y工作方式等,这里就不介绍了。示波器入门操作是容易的,真正熟练则要在应用中掌握。值得指出的是,示波器虽然功能较多,但许多情况下用其他仪器、仪表更好。例如,在数字电路实验中,判断一个脉宽较窄的单脉冲是否发生时,用逻辑笔就简单的多;测量单脉冲脉宽时,用逻辑分析仪更好一些。 1.获得基线:当操作者在使用无使用说明书的示波器时,首先要获得一条最细的水平基线,然后才能用探头进行其他测量,其具体方法如下:
(1)预置面板各开关、旋钮。
亮度置适中,聚焦和辅助聚焦置适中,垂直输入耦合置“AC,,,垂直电压量程选择置"5mv/div",垂直工作方式选择置“CHl”,垂直灵敏度微调校准位置置“CAL",垂直通道同步源选择置中间位置,垂直位置置中间位置,A和B扫描时间因数一起预置在“0.5ms/div",A扫描时间微调置校准位置“CAL’’,水平位移置中间位置,扫描工作方式置“A”,触发同步方式置“AUTO",斜率开关置“+”
,触发耦合开关置“AC’’,触发源选择置"INT"。
(2)按下电源开关,电源指示灯点亮。
(3)调节A亮度聚焦等有关控制旋钮,可出现纤细明亮的扫描基线,调节基线使其位置于屏幕中间与水平坐标刻度基本重合。
(4)调节轨迹平行度控制使基线与水平坐标平行。
2.显示信号:一般情况下,示波器本身均有一个0.5Vp—p标准方波信号输出口,当获得基线后,即可将探头接到此处,此时屏幕应有一串方波信号,调节电压量程和扫描时间因数旋钮,方波的幅度和宽窄应变化,至此说明示波器基本调整完毕可以投入使用。
3.测量信号:将测试线接在CHl或CH2输入插座,测试探头触及测试点,即可在示波器上观察到波形。如果波形幅度太大或太小,可调整电压量程旋钮;如果波形周期显示不适合,可调整扫描速度旋钮。
三、特殊使用方法
1.交流峰值电压测量
(1)获得基线。
(2)调整V/div旋钮,使波形在垂直方向显示5div(即5格)。
(3)调节“A触发电平”获得稳定显示。
(4)用以下公式计算峰值电压。
电压(p—p):垂直偏转幅度/度x(VOLTS/div)/开关档极x探极衰减倍率。
例如:测得上峰到下峰偏转是5.6度,VOLTS/dir开关置0.5,用x10探极衰减倍率,将数据代人:电压二5.6X0.5 X 10二28 V。
2.上升时间测量
上升时间:水平距离(度)x时间/度(档极)/扩展系数。
例如:波形两点间的距离为5度,时间/度档级为1Us,x10扩展末扩展(即x1),将给定值代人:上升时I司;5X1/1;51xs。
3.相位差测量
相位差:水平差值(度)x水平刻度校准值(度/度)。
例如:水平差值为0.6度,每度校准到45度,将给定值代人公式:相位差:0.6x45:27。

4.频率的测量

用示波器测量信号频率的方法很多,下面介绍常用的两种基本方法。

  1.周期法

  对于任何周期信号,可用前述的时间间隔的测量方法,先测定其每个周期的时间T,再用下式求出频率f :f=1/T

  例如示波器上显示的被测波形,一周期为8div,“t/div”开关置“1μs”位置,其“微调”置“校准”位置。则其周期和频率计算如下:

  T=1us/div×8div = 8us

  f= 1/8us =125kHz

  所以,被测波形的频率为125kHz。

  2.李沙育图形法测频率

  将示波器置X-Y工作方式,被测信号输入Y轴,标准频率信号输入“X外接”,慢慢改变标准频率,使这两个信号频率成整数倍时,例如fx :

  fy=1:2,则在荧光屏上会形成稳定的李沙育图形。

  李沙育图形的形状不但与两个偏转电压的相位有关,而且与两个偏转电压的频率也有关。用描迹法可以画出ux与uy的各种频率比、不同相位差时的李沙育图形,几种不同频率比的李沙育图形如图5-15所示。

  利用李沙育图形与频率的关系,可进行准确的频率比较来测定被测信号的频率。其方法是分别通过李沙育图形引水平线和垂直线,所引的水平线垂直线不要通过图形的交叉点或与其相切。若水平线与图形的交点数为m,垂直线与图形的交点数n,则

  fy / fx=m / n

  当标准频率fx(或fy)为已知时,由上式可以求出被测信号频率fy(或fx)。显然,在实际测试工作中,用李沙育图形进行频率测试时,为了使测试简便正确,在条件许可的情况下,通常尽可能调节已知频率信号的频率,使荧光屏上显示的图形为圆或椭圆。这时被测信号频率等于已知信号频率。

  图5-16常用频率比的李沙育图形

  由于加到示波器上的两个电压相位不同,荧光屏上图形会有不同的形状,但这对确定未知频率并无影响。

  李沙育图形法测量频率是相当准确的,但操作较费时。同时,它只适用于测量频率较低的信号

 

 

 

常见现象

没有光点或波形

  电源未接通。

  辉度旋钮未调节好。

  X,Y轴移位旋钮位置调偏。

  Y轴平衡电位器调整不当,造成直流放大电路严重失衡。

水平方向展不开

  触发源选择开关置于外档,且无外触发信号输入,则无锯齿波产生。

  电平旋钮调节不当。

  稳定度电位器没有调整在使扫描电路处于待触发的临界状态。

  X轴选择误置于X外接位置,且外接插座上又无信号输入。

  两踪示波器如果只使用A通道(B通道无输入信号),而内触发开关置于拉YB位置,则无锯齿波产生。

垂直方向无展示

  输入耦合方式DC-接地-AC开关误置于接地位置。

  输入端的高、低电位端与被测电路的高、低电位端接反。

  输入信号较小,而V/div误置于低灵敏度档。

波形不稳定

  稳定度电位器顺时针旋转过度,致使扫描电路处于自激扫描状态(未处于待触发的临界状态)。

  触发耦合方式AC、AC(H)、DC开关未能按照不同触发信号频率正确选择相应档级。

  选择高频触发状态时,触发源选择开关误置于外档(应置于内档。)

  部分示波器扫描处于自动档(连续扫描)时,波形不稳定。

垂直线条密集或呈现一矩形

  t/div开关选择不当,致使f扫描<

水平线条密集或呈一条倾斜水平线

  t/div关选择不当,致使f扫描>>f信号。

垂直方向的电压读数不准

  未进行垂直方向的偏转灵敏度(v/div)校准。

  进行v/div校准时,v/div微调旋钮未置于校正位置(即顺时针方向未旋足)。

  进行测试时,v/div微调旋钮调离了校正位置(即调离了顺时针方向旋足的位置)。

  使用l0 :1衰减探头,计算电压时未乘以10倍。

  被测信号频率超过示波器的最高使用频率,示波器读数比实际值偏小。

  测得的是峰-峰值,正弦有效值需换算求得。

水平方向的读数不准

  未进行水平方向的偏转灵敏度(t/div)校准。

  进行t/div校准时,t/div微调旋钮未置于校准位置(即顺时针方向未旋足)。

  进行测试时,t/div微调旋钮调离了校正位置(即调离了顺时针方向旋足的位置)。

  扫速扩展开关置于拉(×10)位置时,测试未按t/div开关指示值提高灵敏度10倍计算。

交直流叠加信号的直流电压值分辨不清

  Y轴输入耦合选择DC-接地-AC开关误置于AC档(应置于DC档)。

  测试前未将DC-接地-AC开关置于接地档进行直流电平参考点校正。

  Y轴平衡电位器未调整好。

测不出两个信号间的相位差

  测不出两个信号间的相位差(波形显示法)

  双踪示波器误把内触发(拉YB)开关置于按(常态)位置应把该开关置于拉YB位置。

  双踪示波器没有正确选择显示方式开关的交替和断续档。

  单线示波器触发选择开关误置于内档。

  单线示波器触发选择开关虽置于外档,但两次外触发未采用同一信号。

调幅波形失常

  t/div开关选择不当,扫描频率误按调幅波载波频率选择(应按音频调幅信号频率选择)。

波形调不到要求的起始时间和部位

  稳定度电位器未调整在待触发的临界触发点上。

  触发极性(+、-)与触发电平(+、-)配合不当。

  触发方式开关误置于自动档(应置于常态档)。

触发或同步扫描

  缓缓调节触发电平(或同步)旋钮,屏幕上显现稳定的波形,根据观察需要,适当调节电平旋钮,以显示相应起始位置的波形。

  如果用双踪示波器观察波形,作单踪显示时,显示方式开关置于YA或YB。被测信号通过YA或YB输入端输入示波器。Y轴的触发源选择“内触发一拉YB”开关置于按(常态)位置。若示波器作两踪显示时,显示方式开关置于交替档(适用于观察频率不太低的信号),或断续档(适用于观察频率不太高的信号),此时Y轴的触发源选择“内触发-拉YB”开关置“拉YB”档。

示波器使用不当可能造成的异常现象

  示波器在使用过程中,往往由于操作者对于示波原理不甚理解和对示波器面板控制装置的作用不熟悉,会出现由于调节不当而造成异常现象

 

参考视频:http://v.youku.com/v_show/id_XMjI3NTExMzA0.html

          http://v.youku.com/v_show/id_XMjAxODEwMjQ0.html

关键字:示波器  使用概述 引用地址:示波器的使用概述

上一篇:完善的测量系统--探头ABC
下一篇:了解示波器十个问题

推荐阅读最新更新时间:2024-03-30 23:12

创新源自推动极限
一    ,死区时间是什么? 最早发明的数字示波器,应该基于几个考虑: 能不能用数字技术把带宽做高,因为模拟示波器的发展碰到很多瓶颈,能不能知道触发之前发生了什么,或者把触发前后的波形情况记录下来,最好能回放,能不能对波形进行一些处理,比如时域变频域,能不能对记录的波形进行离线测试。这些问题,对于模拟示波器来讲,几乎是不可完成的任务,一切的客户需求,象是为数字示波器的诞生带来无限可能,而且半导体技术和 DSP 技术的发展,给数字示波器的技术带来了突破。   数字示波器能把信号随心所欲的存下来,但是处理起来无论如何是需要花时间的啊,尤其在需要做完测试测量把结果显示出来,需要花费大量的时间,这个时候,就带来了另外一个问题,波
[测试测量]
示波器探头使用的注意事项
别看一个示波器探头很简单,其实还是很有讲究的。以下是网上搜到示波器探头的一点小经验,供大家使用时参考一下。   首先是带宽,这个通常会在探头上写明,多少MHz。如果探头的带宽不够,示波器的带宽再高也是无用,瓶颈效应。   另外就是探头的阻抗匹配。探头在使用之前应该先对其阻抗匹配部分进行调节。通常在探头的靠近示波器一端有一个可调电容,有一些探头在靠近探针一端也具有可调电容。它们是用来调节示波器探头的阻抗匹配的。如果阻抗不匹配的话,测量到的波形将会变形。调节示波器探头阻抗匹配的方法如下:首先将示波器的输入选择打在GND上,然后调节Y轴位移旋钮使扫描线出现在示波器的中间。检查这时的扫描线是否水平(即是否跟示波器的水平中线重合),如果
[测试测量]
示波器信号完整性的意义
对任何优秀的 示波器 系统来说,准确重建波形的能力都是关键,这种能力称为信号完整性。示波器类似于一台摄像机,它捕获信号图像,然后可以观察和解释信号图像。信号完整性的核心有两个关键问题: 1、在拍摄时,拍到的是不是实际发生事件的准确图像? 2、图像清晰还是模糊 3、每秒可以拍摄多少张这么准确的图片? 示波器不同的系统和性能功能结合在一起,影响着其提供最高信号完整性的能力。探头也影响着测量系统的信号完整性。 信号完整性影响着许多电子设计学科。直到几年前,它对数字设计人员来说还不算大问题。设计人员可以依赖逻辑电路,像布尔电路一样操作。当时有噪声的、不确定的信号发生在高速电路中,RF设计
[测试测量]
正确选择和设置探头至关重要,事关示波器测量精准性!
探头的作用至关重要,为实现测量的最优结果,必须进行折中,特别是在进行高精度测量时。有时示波器标配的无源探头并不是实现最佳精度的解决方案。因此,在给示波器选配探头的时候,如何正确选择探头是非常重要的,今天安泰测试就给大家分享一下如何正确选择探头和设置示波器探头,希望对大家有所帮助。 1、选择适当衰减比的探头。最大限度地降低衰减,使信噪比达到最优。在精确测量中,非常重要的一点使信号幅度达到最大,同时使外部噪声达到最小。探头选择是关键的第一步。 电压探头与示波器的输入阻抗构成电压分路器(如1X、10X、100X),会衰减输入信号。1X探头不会降低或衰减信号,10X探头则会把输入信号降低到原始信号幅度的1/10。示波器通过放大信号
[测试测量]
正确选择和设置探头至关重要,事关<font color='red'>示波器</font>测量精准性!
重度使用示波器进行优化分析——一个DSDA项目回顾
这是若干年前一个项目,最近有时间整理一下。回忆起来,印象最深刻的就是重度使用示波器辅助分析,进行优化。 项目背景是在原有项目3G+项目基础上,增加一颗2G+ Modem,使支持DSDA功能。 在介绍DSDA之前,稍微区分一下DSDS和DSDA: DSDS,即Dual SIM Dual Standby,双卡双待,但是属于单通。一个SIM处于工作状态,另一张是无法正常工作的,两张SIM分享时隙。 DSDA,即Dual SIM Dual Active,双卡双通。即使一张卡处于工作状态,另一张卡仍然可以正常工作。只不过由于一般手机不会存在两套通话系统,所以通话仍然是一张。但是一张通话,另一张数据业务是不受影响的。 本质上来
[测试测量]
重度<font color='red'>使用</font><font color='red'>示波器</font>进行优化分析——一个DSDA项目回顾
怎样使用取样示波器精确的测量抖动?
当用示波器测量抖动时,一定要知道测试设备对测量结果的贡献。您测量的始终是示波器中的固有抖动与被测器件及DUT驱动源所造成抖动的组合。通常DUT造成的抖动与测试系统的固有抖动有同一量级的幅度。 在多数情况下,这三个贡献者是随机和不相关的,因此如果您使用统计法测量抖动(有效值抖动),它们就以各贡献者的均方根叠加。有可能测量示波器和源的贡献,从总测量结果中抽出DUT的贡献。 有许多因素影响示波器的实际抖动贡献,而且仪器间也各不相同。 触发电平设置:对最小抖动的最佳触发电平,各种触发电路并不相同。它会随器件的不同而不同。调整触发电平,以得到最小的抖动。 触发信号上升时间:示波器测量触发信号和数据间的相对抖动。不能看到触发和数据
[测试测量]
调整扫描线的方法
使用示波器检测信号之前,先使示波器G6K-2P DC12进入测量准备状态。按下电源开关( POWER)钮,这时电源指示灯亮,约10 s后,屏幕上显示出一条水平亮线,这条水平亮线就是扫描线,此线可能处于任意位置。然后再微调聚焦旋钮,使扫描线略为清晰,调整扫描线的方法如图2-41所示。 图2-41; 调整扫描线的方法 扫描线亮度调整完成后,将示波器的探头连接在校正信号输出端(CAL.SV),即示波器校正用方波输出端( CAL)。这是示波器内部电路自己产生的一个标准信号。般示波器输出一个频率为l kHz幅度为0.5 Vp-p的方波信号。然后需要调整垂直位置调整旋钮使扫描线位于显示屏坐标轴的中心位置,再微调聚焦旋钮,使扫描线略为清晰,
[测试测量]
调整扫描线的方法
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved