以软件为核心的无线测试平台的设计与应用

发布者:鑫森淼焱最新更新时间:2016-07-20 来源: mwrf关键字:无线测试平台  射频测试 手机看文章 扫描二维码
随时随地手机看文章
无线技术已经渗透到人们生活的方方面面,正在改变着人们的生活。纵观整个无线测试行业,我们可以看到一些明显的趋势与挑战:首先,测试的自动化程度越来越高,对射频测试的速度要求也越来越严苛。其次,很多新兴的产品会在同一个设备上集成多种无线通信标准。再次,各种新的无线通信标准的不断涌入也为测试带来很大压力。

NI提出的基于PXI的无线测试平台提供了一种“打破常规”的解决思路。即使用基于PXI的模块化射频组件,用户通过软件定义仪器的功能,并实现自定义的无线测试应用。这种方式为工程师们提供了高性能的射频模块,用户自定义的UI以及持续更新的适用于不同无线通信标准的工具包。通过系统集成,最终将得到一个快速、灵活且具有高精度的射频测试方案。针对快速演进的通信协议,基于NI PXI的无线测试方案,只需要升级与之相对应的最新无线工具包,即可进行最新标准的测试。

软件为核心的无线测试平台概述

NI一直倡导“以软件为核心的测试测量架构”。在射频领域,这个理念与“软件无线电(Software Defined Radio)”不谋而合。基于现成可用的模块化射频与中频设备,通过LabVIEW软件和丰富的射频与无线工具包,工程师即可快速实现射频与无线应用的设计、开发和测试的全部流程。

PXI是一种基于PC技术的面向测试测量和自动化应用的坚固平台,融合最新商业可用的PCIe总线技术保证了上下变频后的中频信号能够被实时并持续的数字化到PC进行处理。NI PXI的控制器采用了最新的多核处理器,能够应付任何复杂的通讯算法。另一方面,NI PXI射频模块的种类非常丰富,包括频率范围可达26.5GHz的RF信号分析仪与发生器,矢量网络分析仪,微波开关,射频放大器与衰减器以及功率计等,足以应对大部分的无线射频应用。

软件定义的模块化测试平台自然少不了一个完备灵活的软件平台。一个完整的射频应用软件开发平台应该包含如图1所示的三层架构:系统服务和驱动层,测试应用开发软件,测试系统管理软件。

系统服务和驱动层是连接软件开发环境和硬件设备的纽带。除了起到设备驱动的作用,这一层还包含了硬件设备管理,诊断测试等功能。

NI射频与无线应用软件平台

图1:NI射频与无线应用软件平台

测试应用开发软件即应用程序开发环境。LabVIEW就是一个专门为工程师设计的图形化编程语言,除了和PXI硬件的无缝连接外,它还集成了数以千计的信号处理和分析算法,以及调制解调,频谱分析等各种工具包,针对射频应用,能够完成功率谱、相邻信道泄漏比(ACLR)、误差矢量幅度(EVM)等一系列测量。在LabVIEW开放的软件环境中,用户还可以实现带有自主产权的射频算法,用以应对最新的无线通信协议标准。

系统管理软件层位于软件架构层次中的最顶层。特别对于自动化测试,测试管理软件能够帮助用户大幅缩短软件开发时间,优化测试策略,大大提高测试效率。

提升射频测量速度

软件定义的射频测量系统的核心优势之一便是比传统射频仪器高得多的测量速率。具体来讲,NI PXI平台融合了最新的PCI Express总线技术可以进行高速的数据传输,融合最新的多核处理器技术可以进行快速的信号处理。针对中频与基带信号的实时处理需求的应用,可以直接将信号通过Peer to Peer技术传送到带有FPGA的协处理模块直接进行高速的自定义信号处理。

目前,国际主流移动终端厂商针对移动设备采用非信令测试的方式也大大减少了射频测试的时间。NI PXI平台则是实施非信令测试的最佳平台,如图2所示。NI PXI嵌入式控制器具有多种I/O连接方式,包括GPIB、串口、并口、千兆以太网以及USB,可用于和移动设备连接,进行模式控制,测量结果读取等功能。射频模块则针对待测设备收发射频信号进行测试。

基于NI PXI的非信令测试

图2:基于NI PXI的非信令测试

采用PXI提升射频测试速度的一个典型的案例是TriQuint公司使用NI PXI和LabVIEW缩短了射频功率放大器的特征化时间。现代的功率放大器需要满足更为多样化的需求,被设计成可以在多频带多调制模式下工作。另外,射频功放的特征化测试还需要在多种频率、电平、温度和功率范围下测试,完成一个典型组件的特征化过程需要大约30,000到40,000行测试数据。如果使用传统的机架射频测试设备,每行数据大约需要10秒收集,这样每个独立组件需要超过110小时进行测试。基于NI PXI的解决方案利用高速数据总线、高性能多核CPU和并行测量算法实现了尽可能快的测试速度。此外,NI GSM/EDGE测量套件和用于WCDMA/HSPA+的NI测量套件使用合成测量,所有测量可以使用一组I/Q数据完成。最终,使用NI PXI将测试时间从两周缩短为大约24小时。表1 比较了传统测试台和PXI测试台的测量时间和速度提升。

  传统测试台测试时间 PXI测试时间 速度提升
GSM测试 6 1.1 6倍
EDGE测试 14 1.1 14倍
WCDMA测试 9 1.1 9倍

表1:在单个测量序列中,PXI测试台完成快了6至11倍。时间是基于100帧的测量得到的。

增加系统可扩展性

软件定义的射频测量系统的另一个优势在于增加系统的可扩展性。现在的智能手机可以支持多频段,多个无线标准,事实上,更多情况下,除了射频部分测试,还可能进行音视频接口以及电池功率等方面的测试。模块化仪器提供的灵活性与可扩展性为像有这样需求的测试提供了很大的空间。

PXI已经成为主流的模块化架构测试系统,现在有超过50家的PXI系统联盟(PXISA)提供超过1500种的PXI模块化仪器,仅NI就提供超过500种PXI模块。模块化仪器本身种类的多样性也使得很多射频应用成为可能。比如带有FPGA的协处理模块可以进行在线频谱监测,使用PXI的高速存储设备可以实现射频信号的持续流盘与回放等。

易于兼容最新通信标准

软件定义的射频系统可以很好的支持最新的通信标准。一方面,在任何一个通信标准初期,没有商业可用的通用测试方案时,NI PXI作为一个开放的、自定制的测试平台,可以由科研人员和工程师开发自己算法和测试序列;另一方面,NI公司一直持续投入新一代无线通信标准的测试,无论是硬件产品还是软件工具包都走在该领域的前列。

以802.11ac测试为例,无论从带宽,测量复杂度,调制阶数与目前的WLAN标准802.11n相比,都有显著的提升。NI于2012年1月发布了测试802.11ac WLAN芯片组和设备的先行支持,并于巴塞罗那举办的世界移动通信大会(MWC)上展示了最新的802.11ac测试解决方案,能够支持包括20,40,80和80+80 160MHz各种带宽的信号接收(Rx)和发送(Tx),并支持高达4X4 MIMO的配置。NI测试解决方案兼具足够的灵活性,除了802.11ac,同样可以向下兼容,测试802.11a/b/g/n设备。

总结:

综上所述,NI射频测试方案结合高性能的射频模块与灵活的软件平台,帮助工程师们大大提高了射频测试速度,增添了系统的灵活性,易于兼容最新的通信标准,可以轻松地满足不断变化的市场需求,最大程度上保护测试厂商的资产投资回报。

关键字:无线测试平台  射频测试 引用地址:以软件为核心的无线测试平台的设计与应用

上一篇:NFC技术介绍及其射频测试方法
下一篇:WLAN测试的5要素及提升测试速度的方法

推荐阅读最新更新时间:2024-03-30 23:19

泰克增强RF Scout,运营商可以针对竞争对手进行电信网络基准测试
RF干扰搜索工具扩大了测量范围,增强了网络优化能力 俄勒冈州毕佛顿, 2007年4月30日讯 – 提供通信网络管理和诊断解决方案的全球领导企业--泰克公司(NYSE: TEK)日前宣布,增强其RF Scout干扰搜索软件工具,使其包括射频(RF)基准测量功能,使运营商可以针对竞争对手测量电信网络的质量和覆盖范围。增强的工具中还包括基于地图的集成频谱分析功能,可以更快、更有效地优化网络。 泰克RF Scout于2006年推出,是业内第一个手持式干扰搜索工具。它从搜索射频干扰到检查室内和室外信号质量和覆盖范围,在一个坚固的手持式工具中,为支持高效的网优活动方法提供了必要的RF信号分析工具。手持式仪器、性能和耐用性,使其能够在大楼
[新品]
NRF24L01无线模块射频测试准备工作
NRF24L01 Module的射频性能测试主要包括发射功率(Power)频率(Frequency)和接收灵敏度(Sensitivity)测试,而FCC/CE测试主要FAIL在谐波功率高于标准要求。 一般实验室射频测试都为传导(Conducted)测试,即通过射频线SMA头连到外部仪器测试,对于本Module需要直接从匹配电路的C5、C6之间的pad焊出射频线,并且与PIFA天线断开,射频线的外壳地需要就近接Module地。 射频测试需要准备以下仪器: 1、射频测试线:需要专门的射频线进行测试,并且需要知道测试频率下的插入损耗(IL)。 2、频谱分析仪(用于测发射性能):测2.4G载波信号,最高频率
[单片机]
基于PXI总线的射频仪器在手射频校准和特征参数测试中的应用
如今的手机生产测试面临越来越复杂的环境,一边是多种频段和多制式的挑战,一边是生产测试速度的压力,同时还面临测试成本的压力。确定手机射频参数和功能检验测试的合适的深度和广度是比较复杂的,它需要我们随着生产线的变化,产品本身的成熟度的提升不断寻找平衡点。射频校准在整个生产流程中,它是一个增加产品价值的步骤,它的测试要求直接与产品的设计有关。 生产测试流程 这里的生产测试不包括PCB(印刷电路板)生产,当PCB投入到手机组装线上时,生产测试流程开始,由此手机将经历5个操作步骤: *固件下载; *校准(包括电池校准); *射频特征测试; *组装; *功能测试。 下载固件比较花费时间,特别是固件程式比较大的时候。然而这个过程有另外的
[测试测量]
基于PXI总线的<font color='red'>射频</font>仪器在手<font color='red'>射频</font>校准和特征参数<font color='red'>测试</font>中的应用
射频PA常见指标和测试方法
在无线通信系统中射频前端中的功率放大器PA是非常关键的器件,其主要功能是将小功率信号放大,得到一定大小的射频输出功率。因为无线信号在空气中有很大的衰减,为了通信业务质量的稳定,这势必就需要将已调制的信号放大到足够大再从天线发射出去,它是无线通信系统的核心,决定了通信系统的质量,可以说任何无线通信系统都少不了它。我们把它称作射频前端器件皇冠上的明珠,其实一点也不为过。本文将介绍射频PA常见指标和测试方法。 准备在准备测试之前,我们有必要先准备好测试所需的设备和器件,如下面的列表: 功率计 信号源 频谱分析仪 滤波器 耦合器 衰减器 直流电源 数字波形发生器 测试或评估板 芯片若干 其他器件或设备 在测试之
[测试测量]
<font color='red'>射频</font>PA常见指标和<font color='red'>测试</font>方法
利用电波暗室测试电路的RF噪声抑制
GSM手机的随处可见正导致不需要的RF信号的持续增加,如果电子电路没有足够的RF抑制能力,这些RF信号会导致电路产生的结果失真。为了确保电子电路可靠工作,对于电子电路RF抑制能力的测量已经成为产品设计必不可少的一个环节。本文介绍了一种通用的RF抑制能力测量技术-RF电波暗室测量装置,描述了它的组成和操作方式,并给出了实际测量结果的例子。 现在大多数蜂窝电话采用的无线技术是时分多址(TDMA),这种复用技术以217Hz的频率对高频载波进行通/断脉冲调制。容易受到RF干扰的IC会对该载波信号进行解调,再生出217Hz及其谐波成分的信号。由于这些频谱成分的绝大多数都落入音频范围,因此它们会产生不想要的听得见的“嗡嗡”声。由此可见,R
[网络通信]
手机精确射频测试校准解决方案
手机消费市场竞争日趋激烈,在产品严重同质化的今天,除了从设计上寻求突破,产品品质也是各大厂商的另一个关注重点,具体到射频硬件部分,研发和生产阶段的精确射频测试是保障品质的重要手段。 发射功率是手机发射机测试的重要指标之一,存在两面性,一方面手机需要发射足够高的功率以保证通信质量,另一方面在保证通信质量的前提下,发射功率越低越好,换言之,手机的发射功率需要根据实际情况被精确控制。接收灵敏度是接收机测试最重要指标之一,也是衡量接收机接收能力的重要体现,必须精确测试。 典型的手机射频测试系统如图1所示,由综测仪、测试夹具、待测手机(DUT)组成。测试夹具把综测仪和DUT连接起来,具有一定的插损,这个插损基本恒定不变。综测仪的发射
[测试测量]
移动WiMax参数指标及射频测试浅析
WiMax技术要在具体的应用场景中体现出自身的优势,才能得到市场的认可,这就需要通过应用测试来衡量系统的性能参数。根据WiMax论坛制定的系统参数指标以及测试要求,WiMax的测试方法分为三部分:协议分析、无线射频分析、传输性能分析。本文主要介绍移动WIMAX参数指标,介绍了一些针对802.16d(2004)、802.16e(2005)的标准信号射频性能测试。 WiMAX简介 WiMAX,即全球微波接入兼容(Worldwide Interoperability for Microwave Access),是WiMAX论坛仿照WiFi在全球市场成功的模式,而在IEEE定义的802.16系列标准的基础上定义的。802.16在设计之
[应用]
手机射频测试分析与总结(一)——GPS部分
刚入行的时候手机还是以2G的feature phone为主,两三年的时间已经是3G smartphone的天下了。2G就是GSM+EDGE(就不分2.5G或者2.75G了),3G包含CDMA,WCDMA,TD-SCDMA,此外就是BT/FM这样的标配,目前FM在很多项目里已经消失了,取而代之的是WIFI,中移动更是加上了CMMB。GPS现在也是智能机的标配了。NFC是近期开始发展的一种新技术。   写此文的目的,不是罗列测试项,而是通过对于各测试项的分析和总结,让大家了解各种模块射频测试的相通之处,了解了其中任意的模块就能对其他的模块的测试做到完全的理解。就算是遇到了一种新的技术,我们可根据自己的理解去制定一个完善的TEST PL
[测试测量]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved