通过精确测量降低设备功耗

发布者:Turquoise最新更新时间:2016-08-02 来源: eefocus关键字:精确测量  设备功耗 手机看文章 扫描二维码
随时随地手机看文章
全世界的能量需求很可能超出了所供给的能量。对能源管理的策略则是非常原始和低效的,结果降低了能源分配过程中的可靠性和稳定性。工程师们正努力改善所有电子产品中能量的利用效率,包括商用设备、家用设备、工业电机,以及网络设备。然而,也需要知道在一个闭环系统中能量是怎样被消耗来产生有益作用和减少浪费的。改善效率只是众多因素中的一个。改变消费者对效率的不关心可以通过功耗智能监视来实现,它可以给出节能的选择。

精确的功耗测量和持续监视产生的数据可以提交给本地数据和控制网络。一旦数据到达网络,许多种经过最低程度折中的功率消耗改进措施可以自动给出。实际上,这样的数据网络可以指导我们改善生活方式,例如当空调发生故障时不会让人感到无法理解。

精确测量将提供理解、确认、报告和修正设备功率消耗或功率分配所必须的信息。消费者需要准备好应对在电费帐单结算方式和如何平衡选择所尽义务等方面不可避免的变化。当我们要时常面对每千瓦时3.00美元的电费时,会发生什么呢?这一天正在到来。

在每个负载点进行测量和控制
为了通过智能功率管理和消费者的选择来取得高效率,不仅需要精确测量设备的总体功率,例如整个设备消耗的总功率,而且也需要在负载点处进行精确测量,例如空调、洗碗机、计算机,或者照明灯具等。

智能电表可以按天计量电力消耗,这为消费者提供了改变他们用电模式的最好方法。为了改善自动控制方式,需要为消费者提供各种选择和增值服务,每个设备必须被连接到本地数据和控制网络,用于监视并允许控制建筑物内的各种负载。通过功率测量和使用方式统计,就可以为消费者提供相应的服务,例如维护调度。 这样的网络可以使用各种各样的配置和协议实现,完全取决于应用。

通过识别电能是怎样使用的,包括精确功率测量的本地数据和控制网络可以为消费者和商业用户降低高额的费用。用户可以看到使用空调的费用大约是每月200美元(使用价值),或者与中午使用干燥机而不是下午7点使用的费用差异(使用的时间价值)更可能改变他们的使用方式。

这些在以前只能通过昂贵高端仪表采集到的每个负载点数据现在只需要几美元。功率因数(Power Factor:PF)和视在功率(apparent power:VA)信息可以很容易地获得,这些参数能够用于优化功率分配预算,例如预测设备维护时间,以及理解陈旧系统的疲劳程度。

图1描述了一台使用两种不同电源适配器供电的笔记本电脑的功率消耗。即使实际负载一样,从电力线上供应的功率也有很大的不同。这些有价值的信息现在都可以非常容易地获得。统计的结果可以用于调整设备的工作行为。在电压或线路频率上的微小降落都有可能预示着某种供电故障,都会使设备进入保护模式。

图1 使用两种不同电源适配器的笔记本电脑在上电、稳定工作和下电状态下的功率曲线
 

交流电压的过零信息也可以用于定时,这可以减少继电器触点分离和闭合时产生的电弧。当这些信息以低成本和低功耗的方式获得时,就可以对设备进行许多种改进。当从定性评估过度到定量测量时,投资的回报也更容易量化和控制,因此精确测量就非常必要了。图2描述了一个非常容易使用的数据采集系统。

图2 一种使用78M6612 SoC芯片、基于USB接口的电源插座监视演示设备

准确度的重要性
智能功率管理算法的实现需要清楚描述实际功率消耗和实际的需要,这就要求测量具有相当高的精度。目前,片上系统已经非常普遍,它使每个设备都具备了成为智能仪表的能力。例如,Teridian公司的78M6612交流功率监视SoC可以测量10mA~20A的电流,而且从-40℃~+85℃温度范围内的测量误差低于0.5%。

达到很高的测量准确度需要高分辨率、高精度和很宽的动态范围。许多通用MCU在测量准确度方面受到限制,因为它们只有10或12位的ADC。而78M6612有一个22位的ADC,动态范围和准确度也非常高。动态范围影响的不仅仅是准确度。跨越很宽动态范围进行测量允许相同的电路监视不同领域的应用,从而使成本更低。

关键字:精确测量  设备功耗 引用地址:通过精确测量降低设备功耗

上一篇:用万用表定性判断场效应管、三极管的好坏
下一篇:揭片式钽电容器加电测试时的失效之“谜”

推荐阅读最新更新时间:2024-03-30 23:20

如何利用FPGA解决手持设备MPU的功耗问题
       消费类手持设备市场正呈跳跃式发展。便携式产品处理能力不断增加,所支持的应用越来越多;产品更新换代速度加快,新产品必须满足上市时间要求,以便获得最大的市场机会;产品生命周期的缩短要求缩短开发周期,同时更加强调可复用性和可重复编程能力。新兴手持设备市场还有一个有趣的趋势,即一个系列中的每种设备的出货量越来越少,但系列设备间的定制功能却越来越多,进而有效提升了产品的总出货量。这样,关键挑战就变成了如何开发一个可广泛复用同时又可定制的系统。   为应对上述挑战,越来越多的设计人员开始使用FPGA进行手持产品的开发。FPGA的功能日益强大和丰富,而门数、面积和频率也在不断增加。 FPGA的开发和周转时间要比定制ASIC
[电源管理]
如何利用FPGA解决手持<font color='red'>设备</font>MPU的<font color='red'>功耗</font>问题
精确测量嵌入式USB信号质量
     一 前言   在高速串行技术如此广泛应用的今天,简单易用的USB堪称是PC平台上最成功的I/O技术,普及率几乎100%。而且随着终端用户对于高速USB设备应用需求的不断增加,越来越多的嵌入式通信类终端产品开始增加了USB2.0主机接口的设计以满足客户的应用需求。成熟的应用技术由PC平台转向嵌入式平台的已经成为一种趋势。为了满足USB2.0一致性应用的需求,所有的USB2.0设计都必须满足USB IF发布的USB2.0物理层一致性测试要求。相对于比较成熟的PC平台USB2.0 主机测试技术而言,基于通信类终端的嵌入式USB2.0 主机的测试面临更多的挑战。特别是进行二次开发的应用厂商而言,如何满足USB2.0物理层一致
[嵌入式]
降低设备功耗的方法——精确测量
有人预言,全世界的能量需求很可能超出了所供给的能量。美国能源部估计,预计美国总的能源消耗在2035年将增加30%,达到5万亿千瓦,而在同一时期计划开发的能源,包括可再生能源,增长率仅有22%。 此外,对能源管理的策略则是非常原始和低效的,结果降低了能源分配过程中的可靠性和稳定性。工程师们正努力改善所有电子产品中能量的利用效率,包括商用设备、家用设备、工业电机,以及网络设备。然而,也需要知道在一个闭环系统中能量是怎样被消耗来产生有益作用和减少浪费的。改善效率只是众多因素中的一个。改变消费者对效率的不关心可以通过功耗智能监视来实现,它可以给出节能的选择。 精确的功耗测量和持续监视产生的数据可以提交给本地数据和控制网络。
[测试测量]
降低<font color='red'>设备</font><font color='red'>功耗</font>的方法——<font color='red'>精确</font><font color='red'>测量</font>
精确测量手机发射功率和接收灵敏度
1、引言 手机消费市场竞争日趋激烈,在产品严重同质化的今天,除了从设计上寻求突破,产品品质也是各大厂商的另一个关注重点,具体到射频硬件部分,研发和生产阶段的精确射频测试是保障品质的重要手段。 发射功率是手机发射机测试的重要指标之一,存在两面性,一方面手机需要发射足够高的功率以保证通信质量,另一方面在保证通信质量的前提下,发射功率越低越好,换言之,手机的发射功率需要根据实际情况被精确控制。接收灵敏度是接收机测试最重要指标之一,也是衡量接收机接收能力的重要体现,必须精确测试。 典型的手机射频测试系统如图1所示,由综测仪、测试夹具、待测手机(DUT)组成。测试夹具把综测仪和DUT连接起来,具有一定的插损,这个插损基本恒定不变。综测仪的发
[测试测量]
<font color='red'>精确</font><font color='red'>测量</font>手机发射功率和接收灵敏度
精确的温度至比特转换器解决了温度传感器测量难题
尽管温度是我们生活的基本方面,但是温度难以准确测量。在现代电子产品时代到来之前,伽利略 (Galileo) 发明了能够检测温度变化的基本温度计。两百年后,席贝克 (Seebeck) 发现了热电偶,这种器件能够产生以不同金属的温度变化率为函数的电压。如今,常常利用热电偶以及受温度影响的电阻元件 (RTD 和热敏电阻器) 和半导体元件 (二极管) 以电子方式测量温度。尽管从这些组件获取温度的方法已为大家熟知,但是以好于 0.5oC 或 0.1oC 的准确度测量温度依然富有挑战性 (参见图 1)。 图 1:LTC2983 的温度准确度 要数字化这些基本传感器元件,就需要专门的模拟电路设计、数字电路设计和固件开发技术。LTC2983
[测试测量]
<font color='red'>精确</font>的温度至比特转换器解决了温度传感器<font color='red'>测量</font>难题
微型防水压力传感器提高水下测量精确
ST先进的10bar防水压力传感器为新的“想去哪就去哪”的智能穿戴式装置提供同级最高的测量精度,并被用于三星2017年秋季发布的新系列... 意法半导体(STMicroelectronics,ST)最新的微型压力传感器搭载先进的芯片设计和防水胶配方,为厂商带来高性能和快速铺货等优势,并进一步将水下测量精度提升至新的水准。首张订单来自三星最新的高性能穿戴式装置——智能手环Samsung Gear Fit 2 Pro。 随着智能手表和穿戴式健康追踪器融入到个人生活,使用者想要进一步扩大装置的使用范围,像是游泳等更多的运动中记录成绩。为支援这些发展趋势,三星的下一代运动手环Gear Fit 2 Pro为使用者提供内建GPS、连续
[手机便携]
小模拟信号的精确测量的设计解析
一个量程10千克的秤若能分辨出1克的重量变化,那么这个秤的主要组件常常是增量累加模数转换器。设计师需要温度测量的精确度达到0.01度时,增量累加ADC也常常成为首选方案。增量累加ADC还能够取代那些前面加有一个增益级的传统型逐次逼近寄存器ADC。由于这些数据转换器非常适用于量度真实世界的微小变化,所以温度传感器、天平、换能器、流量计等精密仪器以及无数其他类型的传感器都非常适合采用增量累加ADC。 增量累加ADC表面上看起来也许很复杂,但实际上它是由一系列简单的部件所构成的精确数据转换器。增量累加ADC由两个主要构件组成:执行模数转换的增量累加调制器和数字低通滤波器/抽取电路。增量累加调制器的基本构件(集成运算放大器、求和节点、比较
[电源管理]
小模拟信号的<font color='red'>精确</font>度<font color='red'>测量</font>的设计解析
赛普拉斯推出超低功耗数据记录解决方案,用于便携式医疗设备、可穿戴与物联网设备
Excelon™LP F-RAM™ 为关键的用户数据提供无故障存储,并最大程度地延长电池续航时间 全球领先的嵌入式解决方案提供商赛普拉斯半导体公司( Cypress Semiconductor Corp. )(纳斯达克代码: CY )日前宣布,推出超低功耗非易失性数据记录解决方案。最新一代的便携式医疗设备、可穿戴设备及其他物联网( IoT )应用要求非易失性存储器能够记录持续累积的用户和传感器数据,并且将功耗降到最低,因此该解决方案成为了最理想选择。赛普拉斯全新的 Excelon™ LP 铁电随机存取存储器( F-RAM™ )是业界能效最高的非易失性 RAM 产品,具有近乎无限的瞬时写入寿命,能够在记录关键任务数据的 同时 ,
[医疗电子]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved