电解电容器测试方法指南

发布者:SerendipityJoy最新更新时间:2016-09-09 来源: dzsc关键字:电解电容器  测试方法 手机看文章 扫描二维码
随时随地手机看文章
  1  目的
  为了规范电解电容器来料检验及抽样计划,并促进来料质量的提高,特制定该检验规范。
  2  适用范围
  适用于IQC对电解电容器来料的检验。
  3  准备设备、工具:
  所需工具及其规格型号如表1所示:
表1(工具规格型号)

品名 规格/型号 数量 品名 规格/型号 数量
调压器 0V~450V/三相 1台 电流表 UNI-T 1台
万用表 FLUKE-117C 1台 游标卡尺 mm/inch 1把
电桥测试仪 Zen tech 1台 双综示波器 LM620C型 1台
高低温交变湿热试验箱   1台 温度计   1支
 
  4  外观物理检测
  4.1 首先需检查待测电容是否有正规的《产品规格说明书》,其中需包括产品名称、规格型号、安装尺寸、工艺要求、技术参数以及供应商名称、地址及其联系方式,以确保此批次产品是由正规厂商提供。电容器上的标识应包括:商标、工作电压、标准静电容量、极性、工作温度范围。
  4.2 参考《产品规格说明书》的工艺参数,观察电容的外观、颜色、及其材质等参数是否与其所标注的工艺指标一致。
  4.3 用游标卡尺对电容的安装尺寸进行确认,确保电容的直径、高度以及引出端的直径与间距等参数在产品工艺的误差范围之内,且外观尺寸要符合本公司选用要求。
  4.4 检查电容的外观,确保其外观整洁、无明显的变形、破损、裂纹、花斑、污浊、锈蚀等不良状况;且其标识清晰牢固、正确完整。
  4.5 检查其引出端子,保证其端子端正、无氧化、无锈蚀、无影响其导电性能等状况,且引出端子无扭曲、变形和影响插拔的机械损伤。
  4.6 检查电解电容标注的生产日期不应超过半年,并作好记录。
  5  容量与损耗测试
  5.1 用电桥测试其实际容量与标称容量是否一致(电解电容一般会有±20%的误差范围), 其损耗角正切值tanθ(即D值)大小是否符合国家标准(电解电容器tanθ≤0.25)。
  5.2 对Zen tech电桥测试仪的使用方法:正确连接电源以后,按“POWER”键开启测试仪的工作电压;按“LCR”键选择测试类型(L:电感,C:电容,R:电阻)。
  5.3 按“UP”与“DOWN”键选择测试量程(μF、nF、pF),按“FREQ”键选择测试频率(100HZ、120HZ、1KHZ),可根据厂商提供的技术参数来选择所需的测试频率,本试验选择“100HZ”。
  5.4 按“SERIES”(串联)与“PARALLEL”(并联)选择测试的连接方式,小电容(10μF以下)要用并联模式,大电容(10μF及以上)用串联模式。
  5.5 设置完成后将电桥测试端口(“LOW”与“HIGH”)连接到电容两端,用标签纸分别记下其在显示屏上的容量值与损耗值。并将标签纸贴到相应的电容上,以便后续分析。

  6  纹波电压测试

  6.1 按下图连接电路,将待测电容接至可调直流电源(注意正负极不要接反),示波器探头正极串联一个无感电容(1μF 1200V.DC)至待测电容的正极。

  6.2 对示波器的设置,要先将其设置为直流测试档位,且示波器电压微调旋钮要锁死。

  6.3 在测试过程中,要用调压器将直流电压慢慢调高到额定电压,且要密切关注示波器显示的变化,选择正确的量程,保证能从示波器波形上准确读出电压的大小。

  6.4 用相机拍下纹波波形,且用标签纸记录示波器的量程与格数(即计算出纹波电压)并将其贴到相应的电容之上,以备后续分析比较之用。

  6.5 记录完毕后,断开直流电源,将待测电容和无感电容用灯泡负载进行放电后,将待测电容拆下测试台。

  7  漏电流的测试

  7.1 间接测量方法

  按照下图接线。将待测电容串连一个1K的电阻,接至直流可调电源。用示波器探头接至电阻两端,通过采样电阻两端的电压信号,间接算出待测电容的漏电流。

  操作要领及注意事项:电路接好后,将直流可调电源调至电容的额定电压,待电路平衡两分钟后,读取电阻两端的电压值。读示波器时,电压微调旋钮应锁死,记录电压波形的最大值作为电压值,除以电阻值即得到漏电流的值;调节直流电源时,应缓慢调节(约150V/分钟),避免因充电时电流过大而烧坏电阻;试验结束后应将电容放电后再取下,避免出现事故。

  7.2 直接测量方法

  按下图接线,在电容与直流电源之间外加串联一空气开关,先将S1和S2分别闭合,调节调压器至额定电压给电容充电两分钟。

  之后将S1和S2均断开,此时可调电源处在额定值不要动。在S1和S2之间加一个毫安表,如下图所示,将S1和S2均闭合,稳定一分钟后通过毫安表直接读出漏电流的大小。

  7.3 注意事项

  切忌不可在未给电容充电时直接将毫安表串联到线路中,因开始充电电流较大,稍不慎会将毫安表烧坏。在拆卸过程中,首先要先 用灯泡负载给电容放电,在放电时要先将毫安表拆下,并且要保证放电电流不通过测试电阻,以防将测试电阻与毫安表损坏。

  7.4 1.2Un下的漏电流

  将直流电压调至电解电容额定电压的1.2倍,再次测量其漏电流并将不同的样品进行对比。
 

  8  防爆试验

  8.1 直流测试

  将待测电容施加反向直流电压,慢慢调整可调直流电压,同时用钳流表密切观察电流大小,直流电源的设定一般不超过30V,根据电容器的尺寸设定电流值如下:

  6mm≤电容直径≤22.4mm时,电流不能超过1A;电容直径>22.4mm时,电流不能超过10A。

  8.2 实验过程中用温度计密切观察电容表面温度(可将温度计的感应触头用胶带缠在电容上),注意刚开始电流很小几乎为零,当电容温度升高时(约35~40℃),电流明显增大,此时应密切观察,电流达到或接近10A时,应将电压调低保证电流控制在10A以内。

  8.3 试验开始后30分钟之内,电容器保险阀应打开。若电容保险阀打开,应立即切断电源(350V6800μF的电解电容在以下条件下会自动打开:电流约8A,表面温度约45~60℃),如果电流接近10A且经过30分钟之后保险阀仍未打开,则此项功能缺失。

  9  温度试验

  9.1 电容的容量

      会因为环境温度的不同而改变,一般情况下,容量会因温度升高而增大。温度试验就是在设定的温度之下经过平衡之后测试电容容量的变化。

  9.2 高温试验

  分别接两条小线至待测电容的引出端子,先在常温下测试两条引线端的容量并标明标号做记录,然后将电容放进高低温交变湿热试验箱,引线留在试验箱外面以便测试电容容量。

  打开试验箱开关按钮,点击屏幕中“温度设置”,将温度设置为100℃,点击“运行”,试验箱开始工作。待温度达到100℃后约2小时再次测试容量,算出容量的变化百分比(差值÷最初测量值)。实验中可将不同品牌的电容放进试验箱中一同测试以节省时间。

  9.3 低温试验

  将待测电容放进试验箱(注意不要使用经高温测试过的电容,特殊需求除外)。打开试验箱开关按钮,点击屏幕中“温度设置”,将温度设置为-25℃,点击“运行”,试验箱开始工作。待温度达到-25℃后约2小时再次测试容量,算出容量的变化百分比(差值÷最初测量值)。

  9.4 注意事项

  试验中应密切关注电容有无明显变化,如果出现电容表面开裂、保险阀打开等严重状况,则应使试验箱立即停止工作,试验中应严格按照试验箱的操作规程操作,不可随意打开试验箱门,高温试验结束后,待试验箱内部温度降下来之后再将电容取出,避免烫伤等事故发生。
 

  10  同机对比测试

  10.1 同机对比测试是通过对同台机器,相同安装位置,相同型号,但不同厂商的电容进行的测试,通过用示波器对其纹波的对比检测,可以直观的分析出电容性能的优良。

  10.2 此处可以用一台CHP3030的机器为例,先用示波器记录其空载时电解电容的纹波波形(示波器探头侧要加无感电容进行隔离),然后带载50%~100%测其纹波波形并记录模块温度,开始十五分钟内每隔三分钟记录一下IGBT三相的模块温度,而后每十分钟记录一次IGBT温度,持续测试记录120分钟左右。

  10.3 而后将上述位置电容用不同厂商的电容分别逐次进行替换,用示波器记录其电容两端的波形并记录模块温度,并将各项温度绘制成温度曲线,不同厂商间进行对比分析。10.4此项测试过程中要保证安全操作,特别是对电解电容,拆卸时务必用灯泡负载对其进行放电,确保无安全隐患的出现。

  11  同型号UPS对比测试

  11.1 同型号UPS对比测试,即是用两台相同型号的UPS机器,相同位置安装不同厂商提供的电容进行的对比测试。

  11.2 两台CHP3030KVA安装好电解电容后,测量其空载纹波电压和带载50%~100%后的纹波,并记录两台机器的模块温度,进行对比。

  11.3 测试中示波器的两个探头应设置在相同倍率、相同档位。测试完成后,需将机器还原,在拆卸电解电容的之前必须先用灯泡负载对其进行放电处理,而后将所测得数据与纹波波形进行分析处理,并将各项温度绘制成温度曲线,不同厂商间进行对比分析。

  12  电容的综合性能判断

  将以上测试数据,同类别、同型号、不同厂商的电容从测算容量、容量误差(越小越好)、损耗(越小越好)、温升、纹波电压(越小越好)等全方位、多角度的综合性分析,以确定此电容性能指标的优良。

  13  处理和标示方法

  经抽样检查、判定为合格的整批接收;但在检验中发现的不合格品,应及时做好不合格品标识,作隔离并通知供应商退货处理。

关键字:电解电容器  测试方法 引用地址:电解电容器测试方法指南

上一篇:光电开关的检测
下一篇:测试交流电压和电流

推荐阅读最新更新时间:2024-03-30 23:23

电解电容器高度紧凑型设计的焊片式系列
TDK 集团最新推出两款采用高度紧凑型焊片式设计的 EPCOS(爱普科斯)铝电解电容器系列 B43640*和 B43644*。它们的尺寸范围根据型号由 22 x 25 mm 至 35 x 55 mm(直径 x 高 度)不等,相对于先前具有相同额定电压和额定电容的产品系列而言显得更为紧凑。同时,两 款新产品系列都具有极高的纹波电流能力。 B43640*系列的额定电压范围为 200 V DC 至 450 V DC,电容范围为 82 µF 至 3300 µF,在 105°C 的温度下连续工作使用寿命可达 2000 小时。B43644*系列适用的额定电压范围为200 V DC 至 500 V DC,电容范围为 39 µF 至 2700
[电源管理]
铝<font color='red'>电解电容器</font>高度紧凑型设计的焊片式系列
于TMSF240芯片的内部FLASH的一种自测试方法
0 引言 目前DSP芯片不仅广泛应用于机载设备中,也越来越广泛地应用于飞控计算机和自动驾驶仪中。飞行控制系统的安全性直接关系到飞机和飞行员的存亡。飞控计算机作为飞行控制系统的核心控制处理单元,其可靠性要求是所有航空电子设备中最高的。自动驾驶仪是按一定技术要求自动控制飞行器的装置,与飞机上其他系统交联还可实现对飞机的控制,其可靠性也不容忽视。用于飞控计算机和自动驾驶仪的每一个元器件都必须经过严格的测试。 飞控计算机CPU模块的处理器通常选用PowerPC或X86系列,CPU模块设计有专门的FLASH芯片,为保证飞控程序存放的正确无误,FLASH测试必不可少。而智能接口模块的处理器通常选用TMSF240、TMSF2812等,采用
[测试测量]
于TMSF240芯片的内部FLASH的一种自<font color='red'>测试方法</font>
无线通信设备通用测试方法
随着我国无线通信的迅速发展,对无线通信设备的技术要求越来越高,如何确定其性能指标成为设备生厂商与网络运营商以及通信测试机构所共同关注的问题。本文介绍了用于无线通信设备的通用测试方法。这测试方法适用于包络边续的频率调制或相位调制系统,频率范围:25MHz到1000MHz,信道间隔12.5KHz,20KH及25KHz。 测试设备与测试条件 1、功率测试接收机:用于测试相邻信道的发射机功率。它包括振荡器、中频滤波器、可变衰减器及电平指示器。 2、测试鉴频器:包括混频器与本地振荡器(辅助频率),将所要测试的射频信号频率转换为宽带限值放大器以及宽带鉴频器的频率,它具有下列特性:足够灵敏和精确以便以低至1mW的发射机载频功率相匹配;足够
[测试测量]
常见的手机天线测试方法
随着移动通信的飞速发展和应用,中国的手机行业也不断发展壮大,当然中国的手机用户也在迅猛增长。而手机的射频器件中,手机天线是无源器件,手机天线作为手机上面唯一的一个“量身定做”的器件,它的特殊性和重要性必然要求其研发过程对天线性能的测试要求非常严格,这样才能确保手机的正常使用。现在就简单的介绍一下手机天线的研发过程中的几种常见的手机天线测试方法: 1、微波暗室(Anechonic chamber) 波暗室又叫无反射室、吸波暗室简称暗室。微波暗室由电磁屏蔽室、滤波与隔离、接地装置、通风波导、室内配电系统、监控系统、吸波材料等部分组成。它是以吸波材料作为衬面的屏蔽房间,它可以吸收射到六个壁上的大部分电磁能量较好的模拟空间自由条件。
[测试测量]
10Gbase-T物理层一致性测试方法
2006年6月,基于非屏蔽双绞线铜质电缆的10Gb以太网IEEE 802.3an 10GBASE-T规范得以批准通过,该规范为网络管理员和IT专业人员构建数据中心和企业网络提供了两个重要的特性。首先,它支持传统的铜质电缆,新装用户能够沿用原有的铜质电缆结构并支持RJ-45连接器和接插板。其次,10GBASE-T通过支持高密度的10G开关,实现了有史以来成本最低的10G 互连解决方案。10Gbase-T物理层和信号编码特征如下图所示。 从10Gbase-T物理层和编码特征可以看出,对其接口进行物理层一致性测试是非常重要的,是确保不同设备互通互联的基础。10Gbase-T物理层一致性测试涉及多个测试项目,需要多个测试仪器,下图是物
[测试测量]
10Gbase-T物理层一致性<font color='red'>测试方法</font>
电流互感器变比测试方法
互感器变比极性测试仪 常规互感器变比的检查方法是电流法,从原理上讲是一种容易理解可行的检查方法,但是随着系统容量的增加,电流互感器的一次电流越来越大,最大可达数万安培;现场加电流至数百安培已有困难,数千安培或数万安培几乎不可能,况且体积庞大,重量重达几百公斤或几吨,现场使用更为困难,如采用小电流法,由于电流互感器磁感度、线性度、阻抗、漏抗的影响会使电流互感器误差骤增,失去了变比检查的意义。 电流互感器变比测量使用方法: 1.接线方法:红、黑两芯线对应接互感器变比极性测试仪面板的一、二次插孔,另一端分别接电流互感器变比对应的一、二次。红色线接二次(K1)极性端,黑线接电流互感器的二次(K2)端;红色线接电流互感器的一次(L1
[测试测量]
电流互感器变比<font color='red'>测试方法</font>
一种用于测量ADC转换误差率的测试方法
许多实际高速采样系统,如电气测试与测量设备、生命系统健康监护、雷达和电子战对抗等,不能接受较高的ADC转换误差率。这些系统要在很宽的噪声频谱上寻找极其罕见或极小的信号。误报警可能会引起系统故障。因此,我们必须能够量化高速ADC转换误差率的频率和幅度。 CER与BER 首先,让我们理清误差率描述中的两大差异。转换误差率(CER)通常是ADC关于模拟电压采样的判断不正确的结果,因此,与转换器输入的满量程范围相比较,其相应的数字码也不正确。ADC的误码率(BER)也能描述类似的误差,但就我们的讨论而言,我们把BER定义为纯数字接收错误;如果没有这种错误,那么转换的码数据就是正确的。这种情况下,正确的ADC数字输出未能被FPGA或ASIC
[测试测量]
一种用于测量ADC转换误差率的<font color='red'>测试方法</font>
可处理高数据率的创新型串行总线测试方法
在高端运算(先进的微处理器)和消费电子(图形和游戏芯片组)设备中采用的半导体器件一般通过高速串行总线接口提供高达6.4Gbps的数据率,例如PCI Express 和 HyperTransport。根据2005年的国际半导体发展路线图(ITRS),到2010年,10Gbps以及更高速率的接口将被广泛采用。而业界一些专家预测在10年内,数据率将高达20Gbps,因此一些基本方法必须改变。远端环回是一种极具成本效益的创新技术。通过有效地帮助半导体厂商降低测试成本并缩短新一代半导体的开发周期,远端环回必将加速上述发展趋势。 目前高性能集成电路方面正在发生的架构改变将影响半导体产品的方方面面,包括从设计到终测和封装。这
[测试测量]
可处理高数据率的创新型串行总线<font color='red'>测试方法</font>
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved