霍尼韦尔传感器在测量系统中的应用

发布者:幸福梦想最新更新时间:2017-02-06 来源: eefocus关键字:霍尼韦尔  传感器  测量系统 手机看文章 扫描二维码
随时随地手机看文章

  在自动测控系统中,常需要测量和显示有关电参量。目前大多数测量系统仍采用变压器式电压、电流互感器,由于互感器的非理想性,使得变比和相位测量都存在较大的误差,常需要采用硬件或软件的方法补偿,从而增加了系统的复杂性。

  采用霍尔检测技术,可以克服互感器这些缺点,能测量从直流到上百千赫兹的各种形状的交流信号,并且达到原副边不失真传递,同时又能实现主电路回路和电子控制电路的隔离,霍尔传感器的输出可直接与单片机接口。

  因此霍尔传感器已广泛应用于微机测控系统及智能仪表中,是替代互感器的新一代产品。在此提出了利用霍尔传感器对电参量特别是对高电压、大电流的参数的测量。

  一、测量原理

  1霍尔效应原理

  如图1所示,一个N型半导体薄片,长度为L,宽度为S,厚度为d,在垂直于该半导体薄片平面的方向上,施加磁感应强度为B的磁场,若在长度方向通以电流Ic则运动电荷受到洛伦兹力的作用,正负电荷将分别沿垂直于磁场和电流的方向向导体两端移动,并*在导体两端形成一个稳定的电动势UH,这就是霍尔电动势(或称之为霍尔电压),这种现象称为霍尔效应。霍尔电压的大小UH=RIB/d=KHICB,其中R为霍尔常数;KH为霍尔元件的乘积灵敏度。

  2用霍尔传感器测量电参量的原理

  由霍尔电压公式可知:对于一个成型的霍尔传感器,乘积灵敏度KH是一恒定值,则UH∝ICB,只要通过测量电路测出UH的大小,在B和IC两个参数中,已知一个,就可求出另一个,因而任何可转换成B或J的未知量均可利用霍尔元件来测量,任何转换成B和I乘积的未知量亦可进行测量。电参量的测量就是根据这一原理实现的。

  若控制电流IC为常数,磁感应强度B与被测电流成正比,就可以做成霍尔电流传感器测电流,若磁感应强度B为常数,IC与被测电压成正比,可制成电压传感器测电压,利用霍尔电压、电流传感器可测交流电的功率因数、电功率和交流电的频率。

  由UH=KICB可知:若IC为直流,产生磁场B的电流IO为交流时,UH为交流;若IO亦为直流,则输出也为直流。当IC为交流,IO亦为直流时,输出与IC同频率的交流且其幅值与被测直流IO大小成正比,改变被测电流IO的方向,输出电压UH极性随之改变。故利用霍尔传感器,既可对直流量进行测量,亦可对交流量进行测量。

  系统结构简图

  检测系统构成如图2,被测量经霍尔传感器转换为电压信号,经信号调理电路和多路转换开关选择,通过A/D转换器送给单片机,单片机采用89C51,是该系统的主控器,键盘选用2×4键盘,用于选择被测量的种类,采用数码管或液晶显示被测量的大小。

  二、电参量的测量方法

  1电压、电流信号的测量

  电流的测量可采用磁平衡式霍尔电流传感器(亦称为零磁通式霍尔传感器)。

  当被测电流IIN流过原边回路时,在导线周围产生磁场HIN这个磁场被聚磁环*,并感应给霍尔器件,使其有一个信号UH输出;这一信号经放大器A放大,输人到功率放大器中Q1,Q2中,这时相应的功率管导通,从而获得一个补偿电流IO;由于此电流通过多匝绕组所产生的磁场HO与原边回路电流所产生的磁场HIN相反;因而补偿了原来的磁场,使霍尔器件的输出电压UH逐渐减小,最后当IO与匝数相乘N2IO所产生的磁场与原边N1IIN所产生的磁场相等时,IO不再增加,这时霍尔器件就达到零磁通检测作用。

  这一平衡所建立的时间在1μs之内,这是一个动态平衡过程,即原边回路电流IIN的任何变化均会破坏这一平衡的磁场,一旦磁场失去平衡,就有信号输出,经过放大后,立即有相应的电流流过副边线圈进行补偿。因此从宏观上看副边补偿电流的安匝数在任何时间都与原边电流的安匝数保持相等,即N1IIN=N2IO,所以IIN=N2I2/N1(IIN为被测电流,即磁芯中初级绕组中的电流,N1为初级绕组的匝数;IO为补偿绕组中的电流;N2为补偿绕组的匝数)。

  由原、副边匝数可知,只要测得补偿线圈的电流IO,即可知道原边电流IIN,如原边为导线穿心式,则N1=l,IIN=N2IO。利用同样的原理可进行电压测量,只需在原边线圈回路中串联一个电阻R1,将原边电流IIN转换成被测电压UIN。即UIN=(R1+RIN)IIN=(R1+RIN)N2IO/N1,RIN为原边绕阻的内阻(一般很小不计)。对特高压交流电压的测量,先经隔离变压器降压后,对降压后的电压进行测量,然后对测量数据乘以倍数,即可得被测电压的大小。

  该测量输出信号为电流形式IO。若在霍尔电流传感器的输出电路与电源零点之间串接恰当的电阻R0,并在该电阻上取电压,就构成了电压形式的输出。输出电压经电压调整电路、线性放大电路、不等位补偿电路、射集跟随等获得所需的电压,便于测量与显示。

  2功率及功率因数、频率等电参数的测量

  由正弦交流电有功功率的定义P=UIcosψ可知,只要准确测量出U,I及电流与电压相位差ψ,就可算出P与cosψ。采用传统的电磁式电压、电流互感器进行测量,由于互感器的非理想性,除存在变比误差外,更主要的是存在较大的相位误差,这就使测得的ψ值不能真实地反映负载的性质。若采用霍尔电压、电流传感器及真有效值转换器(如AD637)等,可以使功率及功率因数的测量精度大大提高。

  此外,霍尔传感器还可以测量从直流到100kHz的任意波形的交流量,从而克服了电磁式互感器有特定的额定频率的弊端。真有效值转换器可以将正弦波形或任意波形的交流量转换为直流量,输出直流的大小正比于交流量的有效值,且转换精度高,因而测量相对准确。

  测量原理如图4所示,交直流电压、电流经霍尔电流传感器、霍尔电压传感器隔离、转换后,得到与之对应的电压信号,再经真有效值转换器转换为直流(直流电不需转换),其大小正比于交流电的有效值,直流(或转换后的直流)电压经A/D变换后送入单片机,这就采集到了U,I的大小。

  另外将传感器副边输出的电信号U1,U2分别经过零电平比较器1和2,当信号由负变正,通过零点时产生一个脉冲,加到门控电路输入端。设U1超前于U2,则前者作开启信号,后者作关闭信号。门控电路产生一个脉冲宽度对应于两个信号相位差的矩形脉冲,该脉冲一路送单片机的定时/计数器T1口,单片机测出相邻两个矩形脉冲前沿之间的时间间隔t,即为被测信号的周期Tx(频率fx=1/Tx)。

  另一路送至与门电路,打开计数与门,在此期间,时标信号Ts经由与门至单片机的定时/计数器TO口计数,设计数值为N,则U1与U2相位差为△ψ=Ts/TxN×360°。经单片机计算出功率因数cosψ,进一步计算出有功功率P=UIcosψ,并将测得参数U,I,P,cosψ,ψx等送显示电路显示。如要测三相电路的总功率,则分别测得每一相的功率,然后三相功率相加即可。此外,该系统也可测量无功功率和视在功率等电参数。

  基于霍尔传感器的电参量检测系统具有很好的线性度、精确度和良好的反应时间。温度漂移小,霍尔元件在-40~+45℃的温度范围内,霍尔电压的温度系数仅为0.03%~O.04%。

  这里所介绍的测量方法达到了对电参量进行高精度的隔离传输和精确检测的目的,特别适合高电压、大电流电参量的测量。这为研制一种新的电参量测量仪器打下了一个良好的基础,在工程上具有一定的应用价值。不足之处,霍尔元件存在不等位的电势的影响,需加补偿电路修正。


关键字:霍尼韦尔  传感器  测量系统 引用地址:霍尼韦尔传感器在测量系统中的应用

上一篇:阻抗测量方法在传感器工艺中的应用
下一篇:传感器在食品工业温度测量中的应用

推荐阅读最新更新时间:2024-03-30 23:32

收购XSens,mCube(矽立科技)要引领传感器3.0革命
日前,mCube(矽立科技)表示,从安森美半导体手中收购运动追踪技术供应商Xsens的流程已经顺利完成。Xsens现已成为mCube(矽立科技)的全资子公司,它将保留Xsens的品牌名称,并在荷兰恩斯赫德总部继续作为mCube(矽立科技)的独立业务部门运营。 mCube(矽立科技)的竞争力有哪些?收购Xsens之后,mCube(矽立科技)将如何进行下一步计划,日前,mCube(矽立科技)总裁王瀚青博士在接受采访时,对这些问题给于了一一解答。 mCube(矽立科技)总裁王瀚青博士 mCube(矽立科技)成立于2009年,主要生产MEMS产品,其加速度传感器MC3672是全球最小尺寸的传感器,该公司是第一
[传感器]
收购XSens,mCube(矽立科技)要引领<font color='red'>传感器</font>3.0革命
基于Linux的传感器网络网关系统设计
引言 传感器网络是计算机科学技术的一个新的研究领域,集成了传感器、微机电系统和网络二大技术形成的传感器网络是一种全新的信息获取和处理技术。近几年,在传感器网络管理、查询和数据分发等方面的研究都得到了相当大的发展。而传感器网络要真正投入使用,则不能完全孤立存在,需要通过网关设备接入外部网络,如Internet、局域网或企业内部互联网,提供用户对无线传感器网络的远程访问和监测。 1.系统总体设计随着通信技术、嵌入式计算技术和传感器技术的飞速发展和日益成熟,具有感知、计算和通信能力的微型传感器开始出现。由大量成本低廉的这类传感器节点通过无线方式组成了传感器网络。传感器网络综合了传感器技术、嵌入式计算技术、分布式信息处理技术和无线通信技术
[单片机]
基于Linux的<font color='red'>传感器</font>网络网关系统设计
霍尼韦尔磁性位置传感器
霍尔效应是电磁效应的一种,这一现象是美国物理学家霍尔于1879年在研究金属的导电机制时发现的。霍尔效应定义了磁场和感应电压之间的关系。当电流通过一个位于磁场中的导体的时候,磁场会对导体中的电子产生一个垂直于电子运动方向上的的作用力,从而在垂直于导体与磁感线的两个方向上产生电势差。 霍尔效应原理示意图 霍尔效应多年前就已经被人们知道并了解,但基于霍尔效应的传感器在材料工艺获得重大进展前并不实用,直到出现了高强度的恒定磁体和工作于小电压输出的信号调节电路。根据设计和配置的不同,霍尔效应传感器可以作为开/关传感器或者线性传感器,被广泛应用于电力系统中。 霍尼韦尔是率先研发霍尔效应技术产品的公司。30多年以来,该公司时刻紧
[嵌入式]
怎样选择传感器
现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理地选用传感器,是在进行某个量的测量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也就可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。 1、根据测量对象与测量环境确定传感器的类 要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有
[嵌入式]
穿戴式装置风潮 带动电源与传感器发展
      由于穿戴式装置出货量将进入高速成长期,用在穿戴式装置上的超薄感测器、电源产品成为相关厂商的开发重点,如利用热电效应的发电膜、超薄电池、可挠式与可伸缩式感测器,各厂无不期待尽快抢占市场。   日本富士软片(Fujifilm)公布可挠式热电转换模组薄膜,借由薄膜表层与里层温差,可以让电荷从高温区流到低温区的热电效应,借此获得电流,研究员青合利明表示,只要把该社的热电转换模组贴在热交换器管线外侧,电力便足以驱动系统感测设备。   日本家庭的家电、照明、汽车等相关设备产生的热量中,估计有3分之2并未利用,热电转换模组可活用这些并未利用的能源;而因富士软片热电转换模组使用是无毒性轻量有机材料,也可用在身边或衣服上,
[手机便携]
豪威科技推同类最佳400万像素2微米图像传感器
豪威科技,全球排名前列的数字图像解决方案开发商,在CES召开前发布了OS04C10。该产品是一款用于物联网和家用安防摄像头的2.0微米像素尺寸、400万像素分辨率高性能图像传感器。与设计人员选择的平台搭配使用时,OS04C10可为具有AI功能的电池供电摄像头提供系统超低功耗模式。此外,该产品提供16:9的2688 x 1520高分辨率,同时增加了豪威科技Nyxel®和PureCel® Plus技术的近红外(NIR)和超低光SNR1性能。这款传感器还提供多个高动态范围(HDR)选项,能以60帧/秒的速度捕捉快速移动物体的优质400万像素静止图像和视频。 “AI物联网和家用安防摄像头要求在所有照明条件下均具有优异的性能,以便
[手机便携]
豪威科技推同类最佳400万像素2微米图像<font color='red'>传感器</font>
虹科自动驾驶:激光雷达传感器的核心——MEMS技术
“基于MEMS技术的激光雷达传感器通常价格较低,但其性能不足以用于自动驾驶车辆。”我们经常听到这样的说法。本文将说明我们的传感器如何使这一假设失效,我们如何为激光雷达开发MEMS技术,如何为激光雷达找到理想的镜面尺寸以及决定因素。 汽车应用所需:高性能和可量产 激光雷达应用在自动驾驶车上,必须满足两个基本要求:一方面,提供高性能,包括远距离和宽视野。另一方面,必须具有可量产性,以便能够生产和安装在数百万辆汽车上。激光雷达制造商想了一系列的办法来应对这些挑战。机械式激光雷达系统是目前最常用的系统,电机转动从而带动光束偏转单元。尽管机械式激光雷达拥有广阔的视野和远距离探测的特性,但它们的机械装置需要定期维护,而且体积大、
[汽车电子]
虹科自动驾驶:激光雷达<font color='red'>传感器</font>的核心——MEMS技术
LIN及混合信号工艺的发展提升汽车传感器与传动装置性能
电子产品在汽车中日益突出的重要性引发了对低成本、高可靠性传感器及传动装置日益增长的需求。这些器件并非独立存在,而是必须与系统的主电子控制单元 (ECU) 进行通信。过去的传感器/传动装置通信通常采用单向模拟信号,每一远程设备都采用自己的专线与 ECU 连接。由于汽车环境充满电气噪声,因此很难在这些线路上保持信号完整性,而且系统的可靠性也会受到影响。布线会带来其他问题 ——占用空间,增加重量及成本且难以维护。幸好数字多路复用通信技术可以解决上述问题,这种技术可以保持信号完整性,减少所需线路数量并提供实现整台车辆智能控制的新机会。   当今的两大趋势——汽车通信总线标准化及半导体技术正推动着智能化更高的传感器与传动装置的发展,同时还通
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved