浅谈射频探针的发展

发布者:幸福梦想最新更新时间:2017-05-25 来源: eechina关键字:射频探针  RF 手机看文章 扫描二维码
随时随地手机看文章

射频探针的发展

射频(RF)探针在射频产品生命周期中几乎每一个阶段都起着重要作用:从技术开发,模型参数提取,设计验证及调试一直到小规模生产测试和最终的生产测试。通过使用射频探针,人们便有可能在晶片层次上测量射频组件的真正特性。这可以将研究和开发时间缩短并且大大降低开发新产品的成本。

在仅仅三十年的时间里,射频探针技术便取得了惊人的进步,从低频测量到适用多种应用场合的商用方案:如在110GHz高频和高温环境进行阻抗匹配,多端口,差分和混合信号的测量装置,连续波模式中直到60W的高功率测量,以及直到750GHz的太赫兹应用,都能见到射频探针的身影。

人们最早采用射频探针技术与今天的工具是很不相同的,早期探针使用了由一个很短的线极尖(wire tip)而逐渐收敛的50-Ω微带线,通过探针基片上一个小孔而与被测器件(DUT)的压点(pad)相接触。此时,其技术难度在于如何突破4GHz时实现可重复测量。虽然有可能通过校准过程来剔除一个接触线极尖相对较大的串联电感的影响,但当圆晶片的夹具被移动时,线极尖的辐射阻抗会有较大的变化。高频测量使用的极尖设计与用于直流和低频测量的极尖不同,而且必须使50-Ω环境尽可能地接近于DUT压点。

之后工程师在探针技术上取得了突破。确定了射频探针的基本要求和工作原理:

1) 探针的50-Ω平面传输线应当直接与DUT压点相接触而不用接触导线。对于微带线和随后的共面探针设计,探针的接触是用小的金属球来实现的,这个金属球要足够大以保证可靠且可重复性的接触。
2) 为了能同时接触到DUT的信号压点和接地压点,需要将探针倾斜。这个过程被称为“探针的平面化”。
3) 探针的接触重复性比同轴连接器的可重复性要好得多。便于进行探针极尖和在片标准及专用校准方法的开发。
4)具有很高重复性的接触可以进行探针的准确校准并将测量参考平面移向其极尖处。 来自探针线和到同轴连接器的过渡所产生的探针的损耗及反射是通过由射频电缆和连接器的误差相类似的方式而抵消的。
5) 由于其很小的几何尺寸,人们可以假设平面标准件的等效模型纯粹是集总式的。此外,人们可以从标准件的几何尺寸来很容易地预测模型参数。

随着探针的设计从微带线变换到共面波导(CPW),探针的制造就变得很容易了(图1)。Tektronix公司最终将探针从“自己动手”的工具转换为逐渐形成的射频半导体工业的一种真正的产品(图2)。这预示着圆晶片层次射频测量时代的开始。

图1、基于陶瓷共面线的晶片探针设计

图2、(a)共面探针的顶视图和侧视图

(b)经过修正的各种在片阻抗标准件的一端口测量

在80年代初,Tektronix公司推出了最早的射频圆晶片探针模型TMP9600和蓝宝石校准基片CAL96(图3)。探针的主要开发者Eric Strid和Reed Gleason于1983年创办了Cascade Microtech公司并推出了WPH探针。这两个公司曾经在若干年间提供着非常类似的射频探针,一直到Tektronix公司于90年代初最终退出了圆晶片探针这个业务。在这样的机会下,CascadeMicrotech凭借着与Hewlett Packard公司之间的良好关系,便成为工业界射频探针最主要的供应商。

图3、(a)第一个商用的蓝宝石校准基片CAL96;

(b)来自Tektronix公司的射频圆晶探针TMP9600;

(c)来自Cascade Microtech公司的WPH探针。

WPH探针的频率在很短的时间内就扩大到26GHz,并且在1987年达到了50GHz,以满足迅速开发的单片微波集成电路(MMIC)的需要。V-波段和W-波段探针分别于1991年和1993年出现。1988年,Cascade推出了用于规模化生产应用的26.5GHz系列极尖可替换的探针(RTP)。现在,人们无需从测试台上将探针主体移动便可以迅速更换陶瓷极尖。WPH探针对80年代和90年代微波技术开发做出了贡献,但存在若干个技术上的局限。最关键的局限在于脆弱的陶瓷CPW线。即使施加高于建议值的一个最小的力(例如,为了达到更好的接触)都会损坏探针。许多工程师将这个时刻称为“死亡之声”。陶瓷探针破裂的声音通常还会将整个项目推向穷途末路,因为对于大学和小的研究室来说探针是非常昂贵的。虽然引入了RTP系列,但陶瓷探针还是被别的技术挤出了市场。

当GGB工业公司为基于微同轴电缆的射频探针申请专利时,1988年便成为另一个里程碑。采用微同轴电缆作为中间过渡媒质具有下列这些好处:

1) 机械方面的显著改善延长了探针的寿命。
2) 被损坏的探针可以通过一种相对较为容易且并不昂贵的方式而重新敲打出来。
3) 电器特性得到了改善。
4) 简化制造工艺。
5) 降低成本。

在1993年,GGB公司在IEEE理论和技术协会的国际微波年会上(IMS)介绍了W-波段探针。在1999年,它们的探针达到了220GHz,在2006年又进一步扩展到325GHz,在2012年又达到了500GHz。加上与供应商的密切合作,如Karl Suss(后来的SUSS MicroTech),GGB工业公司成为全世界射频市场上最有影响力的公司之一。

同时期,Cascade公司在1994年的第43届春季ARFTG会议上展示了新型的40-GHz空气-共面探针(ACP)(图5)。几年之内,ACP探针迅速达到了110GHz(1-mm连接器模型)和140GHz(基于波导模型),代替了WPH生产线。到目前为止,由于ACP的柔软及无损式接触,许多工程师喜欢将ACP用于探测金压点。

图4、来自GGB 工业公司的Picoprobe 探针

图5 、Cascade Microtech 公司的ACP 探针

图6、Z∣-探针模型。

图7、Cascade Microtech 公司的Infinity 探针

在2000年,Rosenberger公司强势推出了一个用于PCB应用、具有明显超过传统技术的射频探针的新概念,将探针的几何尺寸缩小到圆晶片层次所要求的水平,并于2001年推出了新的射频圆晶探针∣Z∣-探针。∣Z∣-探针可以覆盖40GHz范围并且实现了若干种创新思想。

1) 这个探针没有使用微同轴电缆。实现了从同轴连接到空气绝缘共面接触线的直接过渡。
2) 这个过渡是在探针体内制作的,这便允许对过渡点进行一个准确的优化,从而将可能的不连续性减到最小。
3) 共面接触是采用一个紫外光刻和电镀工艺(UV-LIGA)制作的,这个工艺与制作MEMS 产品的工艺类似。其极高的精度和可重复性可以形成CPW线和一个恒定的空气气隙非常准确的形状。

在90年代中期,硅被大量应用于射频领域。这给射频探针的制作带来一些挑战。从传统上讲,射频探针的接触是用铍(beryllium)-铜(BeCu)制作的。在探测硅器件和电路的铝接触压点时,这种材料就会变得很麻烦。BeCu极尖的迅速氧化和脏物的累积会导致对铝接触压点的接触重复性的极大降低。为了解决这个问题,供应商提供了带有钨(W)极尖的射频探针。操作多用途测量装置的测试工程师们在每次改变DUT类型(硅或III-V族复合物半导体)时,都被迫要更换探针,即使测试的频率范围保持不变。∣Z∣-探针也致力于解决这种不便之处。共面接触是由镍(Ni)来制作的,在与铝和金的接触压点上均展示出最佳的接触性能。随后,其它射频探针的供应商也开始提供用Ni或Ni合金来制作极尖的多用途探针。

随着对MOS和BICMOS器件的射频特性及缩小DUT接触点尺寸不断增长的需求,CascadeMicrotech公司在2002年的第59届春季自动射频技术组织(Automatic RF Techniques Group-ARFTG)微波测量大会上介绍了基于薄膜技术的新的圆晶探针。这个方法是基于Cascade公司的Pyramid Probe Card 技术。在一个柔软的聚酰亚胺薄膜基片上的微带线从同轴线通过非氧化稀有金属探针极尖向DUT传输信号。Ni探针极尖的接触面积大约为12μm x12 μm,从而可以探测极小的接触压点。这个新型的Infinity 探针展示了卓越的接触的一致性和探针-到-探针的很低的串扰。

Cascade公司提供了工作在110GHz一下不同规格的Infinity探针。用于220和325GHz 测量的基于波导的探针是分别于2005和2007年推出的。在Cascade于2009年后期开始提供用于500GHz-波段的Infinity探针。

在2009-2011年间,两个新成员进入了成熟的探针市场:带有微机械加工的探针DMPI 瞄准的是新兴的亚太赫兹(sub-THz)市场。来自台湾的Allstron公司为110GHz以下的应用提供了并不昂贵的探针,其中,测试成本的降低是最主要的要求。来自于Allstron公司的探针是一种基于微同轴电缆的传统设计。接触结构是空气绝缘的CPW线。它类似于ACP,但是极尖被做成一定的形状来探测具有很小钝化窗口(passivation windows)的铝压点。

图8、Allstron 公司的射频探针

现代对于射频圆晶探针的设计将测试信号从一个三维媒质(同轴电缆或矩形波导)转换到两维(共面)探针的接触上。这种操作需要对传输媒质的特性阻抗Z0进行仔细的处理,并且要在不同传播模式之间进行电磁能量的正确转换。虽然晶片探针的输入是一个标准化同轴或波导界面,但它的输出(探针极尖)则可以实现不同的设计概念。这些界面,特别是探针极尖,会将不连续性带入到测量信号路径中。这种不连续性本身会产生高阶传播模。因此,圆晶探针和DUT激励必须只能支持单个准-TEM传播模式并且要排除高阶模或者对高阶模展现出更高的阻抗。

EM场分布图的转换是由处于单个探针组装内的若干个射频过渡措施来维持的。一个传统的射频探针是由下列几个部分组成的:

1) 测试仪的界面(同轴或波导)
2) 从测试界面到微同轴电缆的过渡
3) 从微同轴电缆到一个平面波导的过渡,如CPW或微带线
4) 面向晶片上DUT的共面界面(或者极尖)

若干种探针或者将3)和4)组合在一起,或者不使用微同轴电缆(图9)。一个同轴连接器是低于65GHz的射频探针常用的测试系统界面。同轴和波导这两种连接方案均是50 到110GHz频率范围内可能的界面。在单次扫描中,覆盖了从直流到110GHz的宽带测试系统利用了最小尺寸(1mm)的同轴连接器。不同尺寸的矩形波导是与110GHz以上的测量系统对接的。

图9、(a)基于一个微同轴电缆的射频探

(b)波导界面

(c)从同轴到共面线的直接过渡

一个探针技术的自然寿命大约是12年。有两个主要因素推动着探针技术的发展:

1) 改善高端应用中的测量精度
2) 降低主流应用的测试成本。

除了主流(Allstron公司)和高端应用(DMPI公司)的新的探针供应商以外,一些射频微波行业的中小型服务商也在提供用于低频及宽频领域的的产品。

FindRF提供的MP系列同轴探针,满足DC-20GHz的测量需求,特性如下:

1.DC-20GHz 带宽
2.超低的插入及回波损耗
3.GSG、GS 配置(0.8/1.5/2.5mm 间距范围)

优势:

1. 容易探测测试没有任何焊接过的电路板信号
2. 兼容pogo 大头针允许探索non-planar 结构
3. 探针的使用寿命更加长久
4. 较少测试时间

应用于:

1)射频和微波模块信号插入,检测和测量输出;
2)高频电路板电气性能分析;
3)高速数字电路分析

该系列探针为应用提供了优良的电气性能与相邻测试点。同时探针提供了多种测量间距满足信号到地面的接触。能够用于多种应用场合,满足多领域的信号探测测试。亲们可以点击阅读原文了解更多详情哦!


关键字:射频探针  RF 引用地址:浅谈射频探针的发展

上一篇:浅谈射频测试和测量的真实环境模拟原则
下一篇:如何有效地进行无线辐射杂散调试

推荐阅读最新更新时间:2024-03-30 23:33

NFC手机即将流行,黑客又有新目标!
  可以进行无线通讯的小型计算器件提高了易用性,让日常生活更加舒适,但技术的发展也可能会走向反面。手机的近场通讯(NFC)功能允许与附近的其他手机和物品自动交换数据。那些具有潜在应用价值的技术都受到了强烈关注,而NFC手机正是这类技术开发的一个例子,但与此同时对安全性和隐私性问题还缺乏足够的考虑。   首部NFC手机,例如诺基亚6131,已经令人印象深刻地演示了对无线技术的成熟运用。包括纽约市正在实施的Mobile Trial在内的很多试点项目,都说明了计算应用更易于使用的潜力。   添加适当的安全和隐私保护会减慢该技术的普及,并很可能会增加成本。然而,只要一项新技术的出现会引发犯罪问题,那么安全性作为一种内在成本就是无法避免
[手机便携]
基于ARM的汽车射频识别防盗系统的设计方案
  本文介绍了新一代基于射频技术的汽车防盗系统结构,提出了一种以ARM微处理器为核心的汽车射频识别防盗系统的设计方案,方案中给出了此汽车射频识别防盗系统的硬件及局部构件的电路图,在硬件平台上移植了嵌入式实时操作系统,并编写了系统的驱动及应用软件,搭建了实验室模拟仿真平台,在此平台上测试运行结果表明系统良好的防盗功能,从而证实了本方案的具有实用性的价值。   1.引言   随着RFID科技的发展,汽车防盗装置日趋严密、完善和使用方便,汽车防盗的发展方向则向智能程度更高的芯片式和网络式发展。基于射频识别技术的汽车防盗系统属于芯片式防盗系统,它是射频技术的新应用。基于射频识别技术的汽车防盗系统具有无接触,工作距离大,进度高,信息搜集
[单片机]
基于ARM的汽车<font color='red'>射频</font>识别防盗系统的设计方案
时序同步-了解和测试包含信号源的多信道射频系统
无论是在商业应用中,还是在航空航天和国防应用中,大多数无线系统都采用多天线技术。这些技术包括天线分集、MIMO (多路输入多路输出)空间复用、波束赋形或相控阵雷达。工程师采用多天线技术来实现分集,多路复用或天线增益。无线系统可以通过这些增益来提高接收机的稳定度、数据吞吐量和信噪比 (SNR)。 然而,随着天线数量的增加,其测试复杂程度也不断增加。因此,工程师需要生成多个射频信道用于接收机测试,并对发射机测试用到的多个射频信道进行分析。生成和分析多个同步射频信号可能会遇到许多挑战。本文探讨了在评测多信道射频系统时对测试信号有什么要求,以及如何配置仪器来满足这些测试要求。 多天线技术 随着更高吞吐量应用的急剧增长,无线系统需要
[测试测量]
时序同步-了解和测试包含信号源的多信道<font color='red'>射频</font>系统
微波射频电路及系统设计研讨会 助力西部核心产业发展
为西部RF、微波和高频电路及系统行业策划的新技术交流会 “2013成都高频电路及系统技术研讨会”(6月21日 成都世纪城新国际会展中心)如火如荼进行中,此次会议与“2013中国成都电子展”同期举办。是由专注于微波、射频、无线技术的行业门户网站微波射频网(MWRF.NET)和中国历史最悠久、最权威的中国电子展组委会联合主办的,已开通官方网站: http://www.mwrfexpo.com/2013/cd.shtml 和 www.icef.com.cn 。 本次会议将围绕“创新RF/微波电路及通信系统设计与测试测量技术” 的主题展开,旨在为设计射频/微波电路、模块与通信系统的工程师搭建一个共同探讨新技术的交流平台。届时国内外领先
[网络通信]
射频导纳物位计的测量原理是什么?
射频导纳物位计是一种常用的物位计产品,主要用于连续物位的测量产品应用于工矿现场,并且适用于大多数应用场合。射频导纳物位计的测量原理是什么呢?下面小编就来具体介绍一下,希望可以帮助用户更好的应用产品。 射频导纳物位计的测量原理 射频导纳是一种从电容式发展起来的、防挂料、更可靠、更准确、适用性更广的新型物位控制技术,是电容式物位技术的升级。所谓射频导纳,导纳的含义为电学中阻抗的倒数,它由电阻性成分、电容性成分、感性成分综合而成,而射频即高频无线电波谱,所以射频导纳可以理解为用高频无线电波测量导纳。仪表工作时,仪表的传感器与灌壁及被测介质形成导纳值,物位变化时,导纳值相应变化,电路单元将测量导纳值转换成物位信号输出,实现物位测量。 对
[测试测量]
单片射频发射接收芯片GJRF400的应用
    摘要: GJRF400是Gran-Jansen公司生产的用于无线通讯系统的射频发送接收芯片,利用它可完成数据流的发送和接收,而且外围电路简单、控制方法灵活,特别适用于无线局域网、元程测试、环境监测和移动图像监测等系统。文中介绍了GJRF400的结构、编程方法和应注意的问题。     关键词: 射频 无线通讯 发射 接收 GJRF400 无线通讯是当今世界发展最为迅速的一个领域,其应用已渗透到人们生活的各个方面。Gran-Jansen公司的GJRF400芯片集成了数据流的发送和接收功能,并具有外围控制电路简单、控制方式灵活的特点。作为无线数字通信系统的核心,GJRF400配合相应的软、硬件即可实现无线局
[工业控制]
射频功率放大器实时检测的实现
作者Email: lz01j@163.com 广播电视发射机是一个综合的电子系统,它不仅包括无线发射视音频通道,而且还包括通道的检测和自动控制电路,因此在设计时,它除了必须保证无线通道的技术指标处于正常范围外,还必须设计先进的取样检测和保护报警等电路,以确保发射机工作正常,从而实现发射机在线自动监测和控制。近年来,随着大功率全固态电视发射机多路功率合成技术的发展,越来越多的厂家采用模块化结构设计,因此单个功率放大器模块是整个发射机的基本测单元,本文就着重讨论单个模块的检测和控制电路,从而实现发射机在线状态自动监测。 一、 工作原理 在功放模块中,主要检测和控制参数为电源电压,各放大管的工作电流,输出功率,反射功率,
[网络通信]
提高RF_PA效率的技术比较
  在向着4G手机发展的过程中,便携式系统设计工程师将面临的最大挑战是支持现有的多种移动通信标准,包括GSM、GPRS、EDGE、UMTS、WCDMA 和HSDPA,与此同时,要要支持100Mb/s~1Gb/s的数据率以及支持OFDMA调制、支持MIMO天线技术,乃至支持VoWLAN的组网,因此,在射频信号链设计的过程中,如何降低射频功率放大器的功耗及提升效率成为了半导体行业的竞争焦点之一。目前行业发展呈现三条技术路线,本文就这三条技术路线进行简要的比较。   利用超CMOS工艺,从提高集成度来间接提升PA效率   UltraCMOS采用了SOI技术,在绝缘的蓝宝石基片上淀积了一层很薄的硅。类似CMOS,UltraCMOS能够提供
[手机便携]
提高<font color='red'>RF</font>_PA效率的技术比较
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved