最近几年随着多Gbps传输的普及,数字通信标准的比特率也在迅速提升。例如, USB 3.0的比特率达到 5 Gbps。比特率的提高使得在传统数字系统中不曾见过的问题显现了出来。诸如反射和损耗的问题会造成数字信号失真,导致出现误码。另外由于保证器件正确工作的可接受时间裕量不断减少,信号路径上的时序偏差问题变得非常重要。杂散电容所产生的辐射电磁波和耦合会导致串扰,使器件工作出现错误。随着电路越来越小、越来越紧密,这一问题也就越来越明显。更糟糕的是,电源电压的降低将会导致信噪比降低,使器件的工作更容易受到噪声的影响。尽管这些问题增加了数字电路设计的难度,但是设计人员在缩短开发时间上受到的压力丝毫没有减轻。
随着比特率的提高,尽管无法避免上述问题,但是使用高精度的测量仪器可以对此类问题进行检测和表征。以下是使用仪器处理这些问题时必须要遵守的测量要求:
a.在更宽的频率范围都要有很大的测量动态范围
实现高动态范围的一种方法是降低噪声。如果仪器噪声达到最低水平,就可以把很小的信号(例如串扰信号)测量出来。精确地测量高频元器件也很关键,因为它们是导致信号完整性问题的最常见原因。
b.激励信号要能精确地同步起来
在测量多条微带线之间信号的时序偏差时,精确同步的激励信号更能保证精确的测量结果。
c.快速进行测量并刷新仪表屏幕上显示的测量结果能够快速进行测量并刷新所显示的测量结果可以使产品的设计效率更高并提高生产吞吐量。
传统上,基于采样示波器的时域反射计(TDR)一直用于电缆和印刷电路板的测试。由于这种示波器的噪声相对较大,同时实现高动态范围和快速测量具有一定难度,虽然通过取平均法可以降低噪声,但是这会影响测量速度。示波器上用于测量时序偏差的多个信号源之间的抖动,也会导致测量误差。此外,给TDR示波器设计静电放电(ESD)保护电路非常困难,因此TDR示波器容易被ESD损坏。
这些问题只凭TDR示波器基本上很难解决,只有通过E5071C-TDR —基于矢量网络分析仪(VNA)的TDR解决方案才能解决。
关键字:矢量网络分析仪 采样示波器 测量特性
引用地址:
基于矢量网络分析仪与传统采样示波器之间的测量特性比较
推荐阅读最新更新时间:2024-10-28 11:58
使用实时采样示波器测量相位噪声—第二部分
在前面的文章中我们讨论了如何使用两种不同的技术进行相位解调,从而从实时示波器采集的波形中提取相位噪声信息。本文我们将继续讨论串行数据时钟恢复技术的精度,何种类型的数据可以进行分析以及提高测量水平的方法。 为了检测示波器相位噪声测量的精度,我们使用了内置宽带随机相位调制源的纯净信号源。通过在较宽的频带上引入相对较大的 PM(Phase Modulation 的简称,下略) 振幅,我们可以将测量值与是德科技 E5052B 等信号源分析仪的测量值进行对比,从而验证两种设备测得的噪声水平。 在下面的测量中(图 1),SSA 的测量结果为蓝色,示波器(是德科技 MSOS804A)的测量结果为绿色。在注入的 PM 范围内两者呈现了完美
[测试测量]
矢量网络分析仪测试系统的设计及维护
1 概述 在微波探测系统中,通常天线都是系统自动控制环路的闭环点。天线作为一个收/发控制系统的重要组成部分,其性能的优劣,将直接影响到全系统的检测能力和探测精度。 本文只探讨网络分析仪在天线S参数测试方面的应用情况。 2 天线S参数测试系统的设计 网络分析仪是用来刻划有源和无源器件各种特性的,这些器件可以是单端口的,也可以是双端口或多端口的。网络分析仪可以测量每个端口的输入特性及一个端口到另一个端口的传输特性。 网络分析仪,不管是标量网络分析仪还是矢量网络分析仪,测量电网络参数时都依赖二极管检波技术(宽带)或超外差接收技术(窄带)。窄带检测适合于相位测量和评估频率抑制器件如滤波器等。宽带检测更适合于
[测试测量]
确保矢量网络分析仪夹具内器件特性的精度
射频和微波系统中元件和子系统的小型化显著减少了同轴连接器的数量,而用直接印制电路板(PCB)安装来代替同轴连接器。因此,在确定器件的特性时,应与矢量网络分析仪的常用接口相连。测试夹具代替了这类接口并提供了优良的解决方案,但测试夹具结构必须精确设计,且特性为已知。此外,夹具对电路的影响必须从测量结果中除去。夹具还须加以校标准,通常是借助短路-开路-负载-直通(SOLT)校准技术进行校准。为了获得精确、重复的测量结果,全面了解具内测量的过程是重要的。对用来评估移动电话的带通滤波器的夹具进行校准,可以为必须考虑的细节和处理过程提供一个范例。
用来测试带通滤波器的典型夹具。该夹具的SMA连接器是与网络分析仪的接口,而
[测试测量]
关于示波器的采样率三个问题
1. 怎样选择示波器的采样率? 采样率通常由带宽决定。高斯响应的示波器(InfiniiVision系列)通常而言采样率需要是带宽的 4 倍或更高。 2. 选择具有最大额定采样率的示波器, 足以提供示波器的额定实时带宽吗? 示波器的最大额定采样率与其实时带宽密切相关。 简单来讲,“实时”表示在单次采集中 ( 非重复 ),示波器可以捕获和显示与其额定带宽对应的信号。 大多数工程师都熟悉 Nyquist 采样定理。根据这 一定理,对于具有最大频率 fmax 的有限带宽 ( 频带受限 ) 的信号,等间隔的采样频率 fS 必须要比最大频率 fmax 高出 两倍以上 ( 即 fs 2•fmax),才能以独特的方式重建信号并 且不会发生混叠
[测试测量]
用于高速旋转MEMS微引擎动态特性研究的光学测量技术进展
简介 在一些微引擎、微型齿轮和其它MEMS装置中,偏离平面的运动(偏摆)对它们的使用性能和可靠性有很大影响,其后果包括齿轮脱离啮合和导致早期失效的非正常磨损。偏离平面的运动还会影响MEMS装置的动态响应,因为微型齿轮、甚至整个装配组件会产生不希望有的震颤或冲击载荷。 本文将描述Sandia微引擎驱动齿轮和输出齿轮的回转运动特性,表明未经平衡的微型齿轮在绕其轴线旋转时,其偏离平面的倾斜位移是如何实现可视化的,以及这些倾斜位移量是如何测定的。 特别需要指出,将实验中的测量结果与通过分析制造公差而确定的预估偏离位移量进行了比较。按照目前的制造水平,在微型齿轮系统中,制造公差约为500nm。根据微引擎的几何尺寸,可以确定驱动齿轮和输出
[测试测量]
Anritsu 矢量网络分析仪在实际测试工作中的应用
1. 前言 矢量网络分析仪是主要用于两信号之间的振幅,相位等关系的测量设备。通过测量模拟电路线性区域的传输和反射系数,矢量网络分析仪能揭示该模拟电路的所有特性,因此网络分析仪被广泛地应用于分析各种不同部件 ,材料,电路,设备和系统。无论是在研发阶段为了优化模拟电路的设计,还是为了调试检测电子元器件,矢量网络分析仪都成为一种不可缺少的测量仪器。 2. Anritsu 矢量网络分析仪的测量功能介绍 矢量网络分析仪可通过采用适当的转换器来测量所有参数。通常,采用S参数测试装置作为转换装置。 S参数被用来分析高频电路。S21 和S12 分别代表正向和反向传输因子,从而能得到传输特性。S1
[嵌入式]
矢量网络分析仪有哪些关键技术指标?
什么是网络分析仪? 网络分析仪可用于表征射频(RF)器件。尽管最初只是测量 S 参数,但为了优于被测器件,现在的网络分析仪已经高度集成,并且非常先进。 射频电路需要独特的测试方法。在高频内很难直接测量电压和电流,因此在测量高频器件时,必须通过它们对射频信号的响应情况来对其进行表征。网络分析仪可将已知信号发送到器件、然后对输入信号和输出信号进行定比测量,以此来实现对器件的表征。 早期的网络分析仪只测量幅度。这些标量网络分析仪可以测量回波损耗、增益、驻波比,以及执行其他一些基于幅度的测量。现如今,大多数网络分析仪都是矢量网络分析仪——可以同时测量幅度和相位。矢量网络分析仪是用途极广的一类仪器,它们可以表征 S 参数、匹配复数阻
[测试测量]
业内第一台PXI矢量网络分析仪介绍
NI公司在2002年推出其第一台RF矢量信号分析仪(VSA)之后,一直致力于为客户提供快速、灵活、精确的PXI仪器,而且其成本仅是传统箱型仪器的几分之一。现如今,NI的RF系列产品已经发展壮大,包括多通道RF信号发生器和分析仪、USB功率计、PXI RF调制模块,并开发了许多的软件工具包,用以支持不断增加的各种无线标准。 图1. 业内第一台PXI VNA,6GHz的NI PXIe-5630 今年,NI的PXI RF系列产品又增添了一个新成员,NI PXIe-5630矢量网络分析仪(VNA)。如图1所示,NI PXIe-5630是6GHz的双通道VNA,支持传输和反射(T/R)系数的矢量测量,也就是正向S参数S11和S21。
[测试测量]