解答是否可以将频谱分析仪当做网络分析仪使用

发布者:TechGuru123最新更新时间:2019-11-25 来源: elecfans关键字:频谱分析仪  网络分析仪  信号幅度  信号失真 手机看文章 扫描二维码
随时随地手机看文章

频谱分析是观察和测量信号幅度和信号失真的快速方法。其显示结果可以直接反映输入信号的傅里叶变换幅度。信号频域分析的测量范围极宽,超过140 dB,使频谱分析仪成为适用于现代通信和微波领域的多功能仪器。频谱分析基本上检查给定信号源,天线或信号分配系统的幅度和频率之间的关系。该分析可以提供有关信号的重要信息,例如稳定性,失真,幅度以及调制的类型和质量。使用该信息,可以执行电路或系统调试以提高效率或验证所需的信息传输和不需要的信号传输是否符合新出现的规则和规定。


现代频谱分析仪已全面应用,从研发到生产制造,再到现场维护。新的频谱分析仪已重命名为信号分析仪。它已成为一种有价值的实验室仪器。它可以快速观察到大的光谱宽度,然后快速靠近放大以观察信号的细节。工程师们非常重视它。在制造领域,测量速度与通过计算机访问数据的能力相结合,可以快速,准确,重复地完成一些极其复杂的测量。

解答是否可以将频谱分析仪当做网络分析仪使用

是否可以将频谱分析仪当做网络分析仪使用?

是的,有两种方法可以将频谱分析仪用作网络分析仪,但它们只能进行标量测量。

方法1:使用频谱分析仪的内置跟踪信号源。 如果我们想测量反射系数,我们需要一个定向耦合器来收集反射功率。 


方法2:使用独立源。 如有必要,可提供耦合器。 前提是光谱仪的扫描速度快于信号源的扫描速度。但是这种方法通常不推荐,因为它的准确性很低。这样对于校准,可用的方法是标准化。该方法消除了接收器和源的频率响应。然而,矢量网络分析仪使用更强大的误差校准技术,这也可以消除不匹配和协调的影响。这意味着,通常,网络分析仪可以比频谱分析仪方法进行更精确的测量。

解答是否可以将频谱分析仪当做网络分析仪使用

在零扫描宽度下,频谱分析仪测量的最快脉冲上升时间是多少?

测量的上升时间通常不超过频谱分析仪的最佳上升时间。 分析仪的上升时间由以下公式确定:

Tr = 0.66 / max RBW

其中RBW是分辨率带宽。

例如,在PSA中,最大RBW值为8 MHz,因此最快的上升时间为:

8 e6 = 0.66 / 82.5 ns

但是,RBW滤波器的带宽误差为(+ 15%)和额定值(中心频率= 3 GHz),因此上升时间范围介于71.7 nS和97 nS之间。

详细内容请参阅频谱分析仪的特定技术规范或指南。

解答是否可以将频谱分析仪当做网络分析仪使用


关键字:频谱分析仪  网络分析仪  信号幅度  信号失真 引用地址:解答是否可以将频谱分析仪当做网络分析仪使用

上一篇:正确认识 PC-Based 逻辑分析仪
下一篇:频谱分析仪的七大性能指标

推荐阅读最新更新时间:2024-10-11 19:06

基于矢量网络分析仪与传统采样示波器TDR之间比较
最近几年随着多 Gbps 传输的普及,数字通信标准的比特率也在迅速提升。比特率的提高使得在传统数字系统中不曾见过的问题显现了出来。诸如反射和损耗的问题会造成数字信号失真,导致出现误码。另外由于保证器件正确工作的可接受时间裕量不断减少,信号路径上的时序偏差问题变得非常重要。杂散电容所产生的辐射电磁波和耦合会导致串扰,使器件工作出现错误。随着电路越来越小、越来越紧密,这一问题也就越来越明显。更糟糕的是,电源电压的降低将会导致信噪比降低,使器件的工作更容易受到噪声的影响。尽管这些问题增加了数字电路设计的难度,但是设计人员在缩短开发时间上受到的压力丝毫没有减轻。 图1. 数字系统设计中的问题。 随着比特率的提高,尽管无法避免上述问题
[测试测量]
基于矢量<font color='red'>网络分析仪</font>与传统采样示波器TDR之间比较
安捷伦E8362C网络分析仪维修案例
一、仪器型号 安捷伦网络分析仪E8362C 二、故障现象: 开机无法正常进入测试界面停留在win桌面 三、拆机维修详解: 检测过程: 仪器通电开机后停留在win桌面,检查发现网分程序、校准文件都没有。 接下来首先,备份原始系统。然后采取恢复系统措施仪器提示Phaselock lost。 因为重装系统后仪器依然无法正常开机显示,接下来就拆机检测排查内部是否有烧毁部件。经拆机检测发现,仪器开关部件损坏,内部组件烧损,起泡,造成端口1输出功率低,初步判断开关坏。 维修措施: 发现目前的故障问题后采取换件维修措施:更换开关损坏微组件,整机调整仪器参数,开机测试仍然未通过。因为仪器内部烧损严重,更换微组件后依然不能解决问题。因为
[测试测量]
安捷伦E8362C<font color='red'>网络分析仪</font>维修案例
频谱分析仪的介绍及主要分类
现在频谱分析仪的应用在我们的生活中是非常广泛的,频谱分析仪的分类有很多,你对频谱分析仪的了解有多少呢,频谱分析仪都有哪些技术指标呢,今天就让小编为大家简单的介绍一下什么是频谱分析仪? 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。它又可称为频域示波器、跟踪示波器、分析示波器、谐波分析器、频率特性分析仪或傅里叶分析仪等。现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1赫以下的甚低频到亚毫米波段的全部无线电频段的电信号。仪器内部若采用数字电路和微处理器,具有存储和运算功能;配置标准接口,就容
[测试测量]
基于PIC32的高性能扫频调谐频谱分析仪设计方案
一、引言 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。扫描调谐频谱分析仪基本结构类似超外差式接收器,工作原理是输入信号经衰减器直接外加到混频器,可调变的本振信号经混频器与输入信号混频降频后的中频信号(IF)再放大后经AD采样显示。 二、系统设计 系统框图如图1所示,该分析仪主要由DDS模块、混频电路、放大检波电路、频谱输出显示电路、键盘、主控部分等组成。通过PIC32控制AD985l,以产生正弦扫频输出信号,然后经滤波、程控放大得到稳定输出,与经放大处理的被测信号混频,再经放大、滤波、
[单片机]
基于PIC32的高性能扫频调谐<font color='red'>频谱分析仪</font>设计方案
利用下一代网络分析仪提高研发竞争力
目前,研发和生产经理以及工程师们正面临着许多严峻的挑战,而且每个团体也有着自身独特的需求。例如在生产阶段,工程师需要缩短测试时间,同时提高吞吐率和产量。此时最重要的就是速度。而在研发阶段,最关键的则是能否更迅速地解决设计问题并减少重复作业。因此,在整个产品开发周期中,测试仪表的易用性至关重要。问题是这些“需求”与现有的测试和测量解决方案不太一致—特别是考虑到目前往往需要使用多种测试设备,才能正确表征元件。当元件位于晶圆之上时,表征甚至会更复杂。在这种情况下,用户绝不是只需把线缆简单地连接起来,就能进行正确测量。 随着加快研发进度、提高生产吞吐率、降低成本等要求给工程师带来的压力越来越大,对灵活、综合的测试和测量解决方案的需求也水
[测试测量]
利用下一代<font color='red'>网络分析仪</font>提高研发竞争力
手机无线通信测试技术 采用频谱分析仪
本文将对手机无线通信中遇到的问题提出相应的解决方案。随着国家发放3G牌照运营许可证,中国进入了3G时代。面对这新的机遇和挑战,无论是通信运营商还是手机制造商都开始进行新一轮激烈的竞争。手机在进行通信时存在着频段控制、通信质量检测和信号大小控制等问题。被射频工程师称为“射频万用表”的频谱分析仪在频谱分析方面的绝对优势可以帮助解决这些问题。 问题一:各个通信运营商要控制自己的通信频段 国际电联对通信的频段进行了严格的定义,工业和科学通信、固定和移动业务、卫星通信等通信方式都必须在各自的频段内进行,即使在同一个频段内各种业务的通信也有严格的定义。如果通信的频段带宽超出自己分配的范围,不仅会干扰其他通信且会影响自身的通信能量。所以需要
[测试测量]
手机无线通信测试技术 采用<font color='red'>频谱分析仪</font>
基于FPGA的简易频谱分析仪
1 引言 目前,由于频谱分析仪价格昂贵,高等院校只是少数实验室配有频谱仪。但电子信息类教学,如果没有频谱仪辅助观察,学生只能从书本中抽象理解信号特征,严重影响教学实验效果。 针对这种现状提出一种基于FPGA的简易频谱分析仪设计方案,其优点是成本低,性能指标满足教学实验所要求的检测信号范围。 2 设计方案 图1为系统设计总体框图。该系统采用C8051系列单片机中的 C8051F121作为控制器,CvcloneⅢ系列EP3C40F484C8型FPGA为数字信号算法处理单元。系统设计遵循抽样定理,在时域内截取一段适当长度信号,对其信号抽样量化,按照具体的步骤求取信号的频谱,并在LCD上显示信号的频谱,同时提供友好的人机会话功能。
[测试测量]
基于FPGA的简易<font color='red'>频谱分析仪</font>
可修正RF信号的RF预失真
  现代 RF放大器 既需要线性也需要高效率。线性要求是源于现代调制方法的使用,如QAM(正交幅度调制)和OFDM(正交频分多址调制,参考文献1)。这些放大器还需要效率,以降低功耗和减少散热。开发人员通常将现代RF放大器组件装在天线杆内。这些“杆顶”放大器的设计中,外壳可以不含风扇且直接暴露在日光下。在功耗上每节省1W,就意味着少了1W的散热器散热需求。另外,对放大器过驱动会导致失真,产生谐波尖刺,使解调无法进行。这些尖刺会落入邻近的频段,也许是手机公司并不拥有的频段。FCC(联邦通信委员会)对这种ACLR(邻道泄漏比)有严格的限制。   所以,你有两个理由去实现良好的线性度:这样才能精确地调制信号,这样你的信号才不会干扰邻近
[网络通信]
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved