示波器测量之波形捕获率

发布者:caijt最新更新时间:2021-07-05 来源: eefocus关键字:示波器测量  波形捕获率  死区时间 手机看文章 扫描二维码
随时随地手机看文章

在测量过程中,高的波形捕获率对于示波器来说很重要,它可以提高示波器捕获随机事件和低概率事件的能力。


在说明波形捕获率之前,首先需弄清楚死区时间的概念。


何谓死区时间?即:两次采集之间,示波器触发释抑、重新准备下一次采集、数据处理时间的总和。死区时间可能比采集时间长,而且长很多。下图显示了一个波形捕获周期的示意图。

 

在上图中,捕获的死区时间包括固定死区时间和可变死区时间两部分。固定死区时间取决于各个仪器的架构本身。可变死区时间则取决于处理所需的时间,它与设定的捕获样本数(记录长度)、水平刻度、采样率以及所选的后处理功能有关(例如,插值、数学函数、测量与分析等)。


死区时间过长容易导致一些关键信号信息丢失。如下图所示。

根据以下公式,如果波形捕获时间(即:样本数*分辨率,或10格*水平刻度)、波形捕获率和信号事件发生概率均已确定,那么增加测量时间可加大捕获并显示信号事件的概率。

其中:

P:捕获偶发重复信号事件的概率 [单位是 %]

GlitchRate:信号故障频率(例如,重复脉冲干扰)[单位是 1/s]

T:有效捕获时间或波形显示时间(记录长度/采样速率,或记录长度 * 分辨率,或 10 * 时间量程/格)[单位是 s]

AcqRate:波形捕获率 [单位是 wfms/s]

Tmeasure:测量时间 [单位是 s]

 

下面举例说明。

例一:

假定毛刺出现频率为10次每秒,观察时间窗口为50ns(10格*5ns/div),观察时间为5s。

按上述公式进行计算如下:

(1)若波形捕获率为1000次波形每秒:

       死区时间%=(1ms-50ns)/1ms=99.995%

       毛刺捕获概率P=100-100*(1-10*50ns)1000*5s=0.25%

(2)若波形捕获率为100万次波形每秒:

       死区时间%=(1us-50ns)/1us=95%

       毛刺捕获概率P=100-100*(1-10*50ns)1000000*5s=91.8%

见下图所示。

例二:

假定某个信号带有一个每秒重复10次的异常。要使该信号显示在示波器上,所采用的水平刻度为10ns/div,如果所用显示屏有10个水平格,则可以计算100ns的有效捕获时间。为了确保捕获所需信号事件的置信度较高,需要达到99.9%的概率。现在,所需的测试时间取决于示波器的波形捕获率,结果见下表:

                  表1 捕获重复异常信号所需时间

 

因此,波形捕获率和水平刻度、记录长度、采样率的设置都有关系。在实际测量过程中,需要根据实际的被测信号在这些参数设置中找到一个平衡点,以最高的捕获概率查看波形,提高调试效率。

关键字:示波器测量  波形捕获率  死区时间 引用地址:示波器测量之波形捕获率

上一篇:示波器基本原理之七:示波器的基本测量
下一篇:示波器你了解多少?存储深度是什么?

推荐阅读最新更新时间:2024-11-06 16:02

数字示波器是应对当今高要求测量挑战的主要角色
  对于从事电子设备设计、制造或维修的人员来说,数字示波器是一个*的工具。在如今快节奏的世界里,工程师们需要的工具来快速准确地解决其测试挑战。数字示波器作为工程师的眼睛,是应对当今高要求测量挑战的主要角色。      示波器早已成为检测电子线路最有效的工具之一,通过观察线路关键节点的电压电流波形可以直观地检查线路工作是否正常,验证设计是否恰当。这对提高可靠性极有帮助。当然对波形的正确分析判断有赖于工程师自身的经验。      数字示波器的用途并不局限在电子领域。通过合适的传感器,数字示波器可以测量各种现象。传感器是响应物理刺激(如声音、机械压力、压强、光线或热量)生成电信号的装置。麦克风是将声音转换为电信号的传感器。      数
[测试测量]
示波器测量和计算信号谐波含量
最近有一位麦科信示波器的用户询问如何使用示波器来计算信号谐波含量,那么我们今天就来系统地学习下示波器如何测量出信号的谐波,如何计算谐波含量的具体的操作。 谐波的干扰,在电力系统中会影响电网供电质量,造成电能浪费,还会使电气设备以及导线过载运行,从而发热,损耗增大,缩短使用寿命,甚至发生故障或烧毁,造成重大经济损失。在信号传输中,也会干扰通信系统,降低信号传输质量。 谐波含量是从交流量中减去基波分量后所得到的量,是评价电能质量的重要指标之一。那么如何利用示波器找出信号中的谐波呢? 我们来回顾一下示波器的FFT(快速傅里叶变换)功能。傅立叶变换认为,任何复杂的信号都是由多个正弦波叠加而来的。 比如这个红色信号,我们就可
[测试测量]
<font color='red'>示波器</font><font color='red'>测量</font>和计算信号谐波含量
使用混合信号示波器验证测量混合信号电路
随着电子产品的功能变得日益复杂,混合信号越来越多地出现在工程师设计的产品中。虽然混合信号可以给设计带来灵活性,但由于模拟和数字信号有着不同的频率和幅度特性,因而工程师调试和测试产品的难度也增大了。本文详细介绍了如何利用安捷伦的混合信号示波器来完成设计调试和测试。 如今,无论是在计算机领域,通信领域还是消费类电子领域,当你信手捻来一块电路板时,就会发现其中所使用的器件是多样性的,往往是混合着模拟器件和数字器件,其中模拟部分包括光、声音、温度、压力等现实世界物理信号,以及电源信号、视频信号、AM/FM等调制信号等,而数字部分则包括单片机、微处理器、可编程逻辑器件、 DSP 等,而像 ADC 、 DAC 、某些单片机等则
[测试测量]
使用混合信号<font color='red'>示波器</font>验证<font color='red'>测量</font>混合信号电路
示波器常见电路测试测量
电池或直流电压测量 测量直流电压要先保证通道的耦合方式处于直流状态,像电池电压的话因为比较低,探头衰减比一般1X即可,垂直档位设置1V或者500mv 然后确保示波器的触发模式处于自动状态 确保电池有电或者直流电压有电压输出,将探针接到电池或者直流电正极,探头的夹子(也就是接地端)接到电池或者直流负极。当然接反也没有影响,就是波形显示的时候,会在示波器零电平的下方。打开示波器测量项的平均值,就可以看到直流电压值。 如上图我们测试的是一节电压1.6V的电池。要注意直流信号没有曲线波形,可以看到示波器上是一条直线。 晶振测量 晶振对电容负载较敏感,当使用×1挡时,探头电容相对较大,相当于一个很重的负载并联在晶振电
[测试测量]
<font color='red'>示波器</font>常见电路测试<font color='red'>测量</font>
如何设置示波器来完美测量抖动技术
对抖动完美测量的一半工作量都在于如何设置示波器 。我们的目标是捕获并显示出信号在系统环境下的真实情况。因为每个实验室都有实时示波器,有必要知道如何去操作它们。抖动测量对环境特别敏感,所以要想 办法针对各种抖动优化测试环境。   首先要选取具备合适带宽的 设备 。如果带宽太窄,测试得边沿速率就会很低。低的沿速率会将幅度噪声更多的转化为时域错误。但是,如果带块太大,也只会 增加测试中的热噪声和散粒噪声从而提高噪底。在NRZ码流来讲,一个经验规则就是选取带宽为码率的1.8倍。   接下来,尽量提高采样率,避免发生由于欠采样而发生的混叠效应。理论上,采样速率至少是信号最高基频的两倍;实际上,捕获过程中的模拟信号整形和数 据变换会留有余量,
[测试测量]
1102示波器使用方法_示波器测量技巧及使用注意事项
测量简单信号 下面用DS1000示波器来观测电路中的一个未知信号,迅速显示和测量信号的频率和峰峰值。 (1)迅速显示该未知信号 迅速显示该未知信号的方法如下: 1)将探头衰减系数设定为“10X”,并将探头上的开关设定为“10X”。 2)将通道1的探头连接到电路被测点。 3)按下AUTO按钮。 示波器将自动设置使波形显示达到最佳。在此基础上,用户可以进一步调节垂直、水平挡位,直至波形的显示符合你的要求。 (2)用示波器进行自动测量峰峰值 示波器可对大多数显示信号进行自动测量。下面用DS1000示波器来测量信号的峰峰值,具体操作方法如下: 1)先按下MEASURE按钮以显示自动测量菜单。 2)按
[测试测量]
1102<font color='red'>示波器</font>使用方法_<font color='red'>示波器</font>的<font color='red'>测量</font>技巧及使用注意事项
如何提高示波器测量准确度,有哪些实现方法
一、水平方向的时间测量 水平方向的测量有波形频率、周期、上升下降时间等参数,想要更准确还原一个波形的时间参数,首先要考虑奈奎斯特采样定理。因此在每次测量的过程中,我们应该特别关注随着时基档位增大而下降的实际采样率。如果需要对高频信号周期准确测量,就需要采样率大于被测信号频率2倍以上,这个倍比关系越大,理论上采样点越密,显示在示波器屏幕上的周期信号便越稳定。 其次要考虑波形漏失情况,当信号中有偶发异常信号出现时,我们更希望它出现在示波器采集过程中,然而市面上大部分数字示波器是串行工作方式,其进行AD转换数据处理时无法对信号采集,此时称为“示波器盲区”,这种情况下我们尽量用较小的存储深度,来缩短“盲区时间”,保证异常偶发信号更大概
[测试测量]
如何提高<font color='red'>示波器</font><font color='red'>测量</font>准确度,有哪些实现方法
IPM死区时间调整硬件解决方案
作者Email: gouyujie@sina.com 摘要:针对不同厂家IPM要求的死区时间参数的不同,本文从硬件电路角度出发,提出一种延时电路方案,解决了因参数调整而引起软件的不统一问题,进而为MCU的大批量mask降低成本提供可能。 关键词: IPM 死区时间 随着现代电力电子技术的飞速发展,以绝缘栅双晶体管(IGBT)为代表的功率器件在越来越多的场合得到广泛地应用。IGBT是VDMOS与双极晶体管的组合器件,集MOSFET与GTR的优点于一身,既具有输入阻抗高,开关速度快,热稳定性好和驱动电路简单的长处,又具有通态电压低,耐压高和承受大电流的优点,特别适合于电机控制。现代逐渐得到普遍推广的变频空调,其内部
[应用]
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved