考虑到协议信号应用的广泛性,ZDS2022示波器免费开放了21种协议触发与解码功能,其中当然包括了USB协议,有些客户经常反应说USB不能有效解码,那么本期视频就让您的USB解码不再成为难题!
首先输入USB协议信号,按下【Decode】键,将解码类型设为USB,开启协议触发;然后设置协议参数,检查D+与D-的通道设置是否正确,选择合适的USB模式,ZDS2022支持12种触发模式,我们选择起始包触发。
对于ZDS2022演示板上的USB信号,屏幕上波形已经有效解码。但是可能您测的自己的USB信号还没有有效解码,那是因为您的阈值设置不合适,您可在“解码设置”中,将自动阈值设为OFF,设为手动阈值,可将D+的阈值调到波形的下半部分合适位置,将D-的阈值调到波形的上半部分合适位置,旋转旋钮A为微调,旋钮B为粗调,在慢慢调节阈值的过程中,USB就会有效解码!
解码后波形却不能稳定显示,这是因为USB协议中帧起始后的电平长度是变化的,造成了触发位置产生偏差,所以不稳定显示是正常的!
图1 触发波形1
图2 触发波形2
您可通过【Single】或是【Run/Stop】将波形稳定显示在界面上。打开事件表,在事件表中可对解码事件一目了然,可通过转动旋钮B,对事件进行查看,同时,短按旋钮B可将选中事件准确定位到屏幕中间位置。
ZDS2022示波器的USB协议解码,您还有哪些疑惑呢?欢迎微信回复,下期视频可能就是在解决您的疑惑!
关键字:ZDS2022 示波器 USB解码
引用地址:
ZDS2022示波器百集实操视频之34:如何用示波器对USB解码?
推荐阅读最新更新时间:2024-11-08 18:42
40GSa/s实时采样新示波器带来哪些测量新变化?part 3
Q:现在电信设备上面,10Gbps的电信号基本上算是最高的了,你们最好的配置在这种信号下表现如何?探头在10GHz下的负载效应如何? DSO81204A与DSO81304A对10Gbps的信号是可以测试的(但是边沿误差稍大,30ps上升时间的10Gbps的数字信号边沿误差约为10%,40ps上升时间的10Gbps信号边沿误差约为5%),我有实际测试的波形,如果你需要,我可以发给您看一看,我的邮箱:deng-liang_sun@agilent.com. 我们的探头系统有多种连接附件,SMA差分探头,点测探头,插孔探头,焊接探头等(都为12GHz带宽,用在DSO81304A上,有补偿功能,系统带宽是13GHz),SMA输入电容小于0.
[测试测量]
数字示波器的采样速率
数字示波器和采样速率和宽带一样,也是一个非常重要的指标,大家对数字示波器的采样速率是否了解呢?采样速率又该如何避免出现混迭现象呢?下面中国传感器交易网的专家来给大家介绍一下数字示波器的采样速率的相关知识吧。 采样速率是数字示波器的一项重要指标,采样速率也称为数字化速率,是指单位时间内,对模拟输入信号的采样次数,常以MS/s表示。如果采样速率不够,容易出现混迭现象。 如果示波器的输人信号为一个100KHz的正弦信号,示波器显示的信号频率却是50KHz,这是怎么回事呢?这是因为示波器的采样速率太慢,产生了混迭现象。 混迭就是屏幕上显示的波形频率低于信号的实际频率,或者即使示波器上的触发指示灯已经亮了,而显示的波形仍不稳定。 那么,对于
[测试测量]
示波器测试一些常见电路的方法
电池或直流电压测量 测量直流电压要先保证通道的耦合方式处于直流状态,像电池电压的话因为比较低,探头衰减比一般1X即可,垂直档位设置1V或者500mv 然后确保示波器的触发模式处于自动状态 确保电池有电或者直流电压有电压输出,将探针接到电池或者直流电正极,探头的夹子(也就是接地端)接到电池或者直流负极。当然接反也没有影响,就是波形显示的时候,会在示波器零电平的下方。打开示波器测量项的平均值,就可以看到直流电压值。 如上图我们测试的是一节电压1.6V的电池。要注意直流信号没有曲线波形,可以看到示波器上是一条直线。 晶振测量 晶振对电容负载较敏感,当使用×1挡时,探头电容相对较大,相当于一个很重的负载并联在晶振电路中,很
[测试测量]
逻辑分析仪的协议分析
逻辑分析仪与示波器相同,是通过采集指定的信号,并通过图形化的方式展示给开发人员,开发人员根据这些图形化信号按照协议分析出是否出错。尽管图形化的显示已经给开发人员带来不少的方便,但是人工将一串串信号分析出来不仅麻烦而且极易出错。 在这个科技高速发展的社会,一切都在追求高效率。自动化、智能化已经成为协议分析的发展方向。在这个思想的指引下各种测试仪器的协议分析功能出现并发展起来。目前大多数开发人员通过逻辑分析仪等测试工具的协议分析功能可以很轻松的发现错误、调试硬件、加快开发进度,为高速度、高质量完成工程提供保障。 关于这个问题广州致远电子有限公司的开发人员提出了一个全新的回答:协议分析是在某个应用领域充分利用逻辑分析仪资源的统一体。
[测试测量]
如何对用在示波器上的电缆或探头进行校正
要将被测信号显示在示波器上,首先要用电缆或探头将该信号连到示波器的输入端,电缆或探头本身会带来变数和测量误差,具体带来哪些变数和误差取决于多种因素,包括被测信号的频率范围、测量时的环境温度、探头或电缆自身质量、连接方法以及老化或损毁程度。随着示波器的性能日益提高,探头变化的校正工作显得愈加重要。示波器的实时带宽愈高,对探头或电缆引入的误差进行校正的必要性愈高 .示波器行业中流行的校正方法都是用软件或固化软件来实现的,这样做,给示波器硬件技术部分提供很好的灵活性,由于现代数字示波器都使用微处理器对波形进行后处理,因此该方法几乎没有什么副作用。 为方便讨论,本文中所用的术语 校准(Calibration) 和 校正(Correc
[测试测量]
物尽其用,10大方法教你扩展示波器用途
现有示波器的一些非传统应用可以让你扩展这种通用仪器的用途。你为示波器支付了大笔费用,你应该充分发挥它的价值。本文总结了十个可能令你惊奇的示波器应用。其中任何一个应用你都会发现非常有用。 目前的中档示波器具有的功能实际上比大多数工程师曾用过的要多。本文总结了十个可能令你惊奇的示波器应用。其中任何一个应用你都会发现非常有用。 使用示波器的快速边沿功能和数学运算实现频率响应测试 频率响应测量需要具有平坦频谱的信号源。通过将示波器的快速边沿测试信号用作阶跃信号源,再利用示波器的衍生功能就可以得到待测设备的脉冲响应。然后运用快速傅里叶变换(FFT)功能获得频率响应。图1显示了获得输入信号的频率响应和37MHz低通滤波器的频率响应的过程步骤。
[测试测量]
提高电路检测质量的一种方法
触发决定了示波器何时开始采集数据和显示波形。一旦触发被正确设定,它就可以将不稳定的显示转换成有意义的波形。 在实际工作中,很多工程师通常把示波器的触发功能视为 一定的 ,认为他们一直使用的边沿和毛刺触发是足够的,以前在评估示波器时,触发指标也很少被放在优先考虑的位置上。事实上,随着技术的不断发展,多功能应用对于通用测试测量仪器示波器的要求也越来越高,为有效地完成实际工作,触发灵敏度已经成为目前示波器的主要参考指标。 由于信号在激励、传输和检测过程中,可能会不同程度地受到随机噪声的污染(尤其是小信号的采集和测量),从混有噪声的信号中提取有用信息、防止误触发是当代信息学科研究的焦点之一。目前市场上有部分示波器采用将灵敏度设
[测试测量]
基于USB2.0集成芯片的H.264解码器芯片设计
H.264/AVC标准具有一系列优于MPEG4和H.263的新特性,在相同的重建图像质量下,H.264比H.263节约50%左右的码率。但是节约码率的代价是增加了算法复杂度。由于仅用软件已经无法实现实时地解码过程。所以必须利用硬件加速,这正是本解码器设计的初衷。 虽然H.264相较同质量的H.263图像,码率节约一半,但是由于本解码器的目标是解决H.264的高清图像(1080i)的解码工作,同时也要适用于普遍的视频外设,所以选用的接口既需要完成高速的码流源文件的传输工作也要易于插拔。而USB接口恰好符合这两个条件。高质量的源码文件数据量较大,对传输接口要求较高。并且在FPGA的仿真环境下,USB接口还要担负起向PC上位机回
[单片机]