频谱分析仪是一种用于在频域中显示信号幅度的仪器。射频领域被称为“射频万用表”, 频谱分析仪可用来进行通用频谱分析、 射频记录和回放 、 EMC 一致性测试和故障排除 、频谱监测、无线电定位和干扰搜寻 等,使用十分广泛。
N9020B-RT2实时频谱分析仪
很多刚入门的工程师在选型时不知道该着重关注哪些指标,下面安泰测试针对频谱分析仪的七大性能指标进行讲解,希望对大家有所帮助:
1、输入频率范围
它指的是频谱分析仪可以正常工作的最大频率范围。 该范围的上限和下限由HZ表示,HZ由扫描本地振荡器的频率范围确定。 现代频谱分析仪的频率范围通常从低频段到射频频段,甚至微波频段,如1KHz到4GHz。 这里的频率是指中心频率,它是显示频谱宽度中心的频率。
2、分辨率带宽
光谱中两个相邻分量之间的最小行间距定义为HZ。 它表示光谱仪在指定的低点区分两个幅度相等的信号的能力。 在频谱分析仪的屏幕上看到的测量信号的频谱线实际上是窄带滤波器的动态幅频特性图(类似于钟形曲线)。 因此,分辨率取决于幅频带宽的带宽。 为窄带滤波器的幅度频率特性定义的3dB带宽是频谱分析仪的分辨率带宽。
3、敏感性
频谱分析仪在给定分辨率带宽,显示模式和其他因素下显示最小信号电平的能力以dBm,dBu,dBv,V等表示。超外差光谱仪的灵敏度取决于仪器的内部噪声。 测量小信号时,信号线显示在噪声频谱上。 为了从噪声频谱中轻松看到信号线,一般信号电平应比内部噪声电平高10 dB。 此外,灵敏度还与扫描速度有关。 扫描速度越快,动态幅频特性的峰值越低,灵敏度越低,产生幅度差。
4、动态范围
可以以指定的精度测量输入端同时出现的两个信号之间的最大差异。 动态范围的上限受到非线性失真的约束。 有两种方法可以显示频谱分析仪的幅度:线性对数。 对数显示的优点在于它可以在屏幕的有限有效高度范围内获得大的动态范围。 频谱分析仪的动态范围高于60dB,有时甚至超过100dB。
是德科技N9030B频谱分析仪
5、频率扫描宽度(Span)
有不同的方法来分析频谱宽度,扫描宽度,频率范围,频谱跨度等。通常是指可以在光谱仪显示屏的左右垂直校准线中显示的响应信号的频率范围(光谱宽度)。根据测试需要自动调整或人工设置。扫描宽度表示光谱仪在测量过程中显示的频率范围(即频率扫描)可以小于或等于输入频率范围。频谱宽度通常分为三种模式。
(1)全扫描频谱分析仪可以一次扫描其有效频率范围。
(2)每个扫频光谱仪必须一次只扫描一个指定的频率范围。可以改变在每种情况下表示的光谱宽度。
零扫描频率的频率为零,频谱分析仪不扫描频率,并成为调谐接收器。
6、扫描时间(扫描时间,简化为ST)
也就是说,执行全频率范围扫描并完成测量所需的时间,也称为分析时间。 通常扫描时间越短,在未来保证测量精度的情况下,需要将扫描时间控制在适当的范围内。与扫描时间相关的因素主要有频率扫描范围、分辨率宽带、视频滤波。现代频谱分析仪通常具有多级扫描时间,最小扫描时间由测量通道的电路响应时间决定。
7、幅度测量精度
绝对幅度精度和相对幅度精度由许多因素决定。 绝对幅度精度是满量程信号的指标,它受输入衰减,IF增益,分辨率带宽,比例保真度,频率响应和校准信号本身精度的影响。 相对幅度精度与测量方法有关,在理想条件下,只有两个误差源,频率响应和校准信号精度。 准确度可能非常高。仪器必须在制造前进行校准。 各种错误已单独记录并用于校正测量数据。 显示的幅度精度得到了改善。
关键字:频谱分析仪 性能指标 信号幅度
引用地址:
频谱分析仪重要性能指标解析
推荐阅读最新更新时间:2024-11-08 19:17
高性能频谱分析仪时域测量原理
图1扫频式频谱分析仪原理框图 总的来说,高性能频谱分析仪的时域测量功能相当于一个窄带通信接收机,它能显示在以中心频率为中心的带内频率的时域波形。这个功能仅仅是使得频谱分析仪的SPAN(跨度)设置为0Hz,从原理上来说只是频谱分析仪的一个小小的扩展应用。我们从频谱分析仪的原理图来说明这个测试的理论依据。 如图1所示,这是扫频式频谱分析仪的原理框图。当SPAN(跨度为0Hz)的时候,扫描控制器的控制信号不再是锯齿波,而变成一条水平线。我们知道,扫描控制器控制LCD显示轴的X轴,当它从水平线上扫的时候,x轴显示的就为时间了。另一方面,扫描控制器变成一条水平线的时候,LO的输出稳定,混频器后的输出信号经过一个通带为分辨力带宽的带通滤
[测试测量]
利用N934xC/B手持式频谱分析仪验证和定位干扰的步骤
无线通信系统时常会共享或重复使用频谱。随之而来的结果就是,无线系统很容易受到干扰。造成干扰的原因有许多,在此我们将主要讨论由正常工作或发生故障的无线系统所引发的干扰。 无线通信系统内出现的干扰通常来自以下来源: 信号之间的侵扰,运行中的系统组件 (例如发生故障的发射机等),或自身对灵敏设备产生干扰的通信系统。 由于所有无线通信系统均容易受到干扰的影响,因此对无线系统中或周围频谱进行快速而准确的测量便成为恢复系统完整性的必要环节。 本应用指南旨在介绍使用手持便携式频谱分析仪对无线干扰进行测量和定位的步骤及技巧。 1. 报告发现系统性能下降 管理机构和标准组织对每个频段内的无线操作和协议进行了定义。由有意或无意的信号,或侵入无线
[测试测量]
是德/安捷伦N9913A频谱分析仪维修案例
一、仪器型号 是德手持频谱仪N9913A 二、故障信息 客户反馈仪器无法正常使用测试异常 三、检测过程 工程师接到仪器首先通电开机,开机正常,频谱功能测试也正常。接下来继续找故障,发现网分模式S22基线不平,S11基线异常没有显示。找到仪器故障所在就好处理了。 四、检修过程 基线异常故障也属于常见故障现象,经检测发现仪器一端口接收机损坏导致基线显示异常。 维修:更换一端口接收机,S11基线显示正常。 整机检测,仪器恢复正常。
[测试测量]
无线频谱分析仪的特性
无线设备在工作时可能会出现周期性地挂起,干扰其他消费电子产品的工作(例如电台),或者无法完全发挥应有的功能,这些问题都会使消费者对它的技术水平和相应的产品供应商丧失信心。 为了避免这种糟糕的情况,选择一种能够满足当今无线产品设计与调试需求的高性能频谱分析仪是至关重要的,这种频谱分析仪不仅要能够检验产品的真实性能,也要能够检测高度集成的无线发射器的功能。 1 无线技术的挑战 在过去几年中,用户所接触的产品功能越来越强大,其目的在于在移动电话这种单一设备中集成多种方便实用的技术,从而增强用户的多功能体验。新的高速数据技术,例如HSDPA/HSUPA和A版本的1xEV-DO,能够为用户提供更强大的功能,例如广播视频
[测试测量]
概述频谱分析仪的功能及应用领域
现代频谱分析仪使用无线电信号设计软件:它们创建了通用的硬件平台和程序功能,因此先进的频谱分析仪具有“软件定义的工具”,基本上保持硬件平台不变。 通过更新软件,频谱分析仪可以集成许多工具,如接收器,仪表,频率计和网络分析仪,从而拓宽了测量功能和频谱分析仪应用。 现代光谱分析仪正在快速发展,已经确定了几种光谱分析仪用于各种应用要求。 不同类型的频谱分析仪具有不同的性能和功能性能指标。 现代扫频式频谱分析仪基本工作原理与原始的频谱分析仪工作原理相比,最显著的变化是:中频滤波器后进行了AD采样,分辩率带宽滤波、检波、视频滤波均采用数字信号处理的方式实现。由于AD采样之前的硬件结构是通用的超外差接收机结构,而AD采样后仪器具体实现的功能
[测试测量]
频谱分析仪的性能参数
一、相位噪声 虽然我们看不到频谱分析仪本振系统的实际频率抖动,但仍能观察到本振频率或相位不稳定性的明显表征,这就是相位噪声 (有时也叫噪声边带)。没有一种振荡器是绝对稳定的,它们都在某种程度上受到随机噪声的频率或相位调制的影响。如前所述,本振的任何不稳定性都会传递给由本振和输入信号所形成的混频分量,因此本振相位噪声的调制边带会出现在幅度远大于系统底噪的那些频谱分量周围 (图 1-1)。显示的频谱分量和相位噪声之间的幅度差随本振稳定度而变化,本振越稳定,相位噪声越小。它也随分辨率带宽而变,若将分辨率带宽缩小 10 倍,显示相位噪声电平将减小10dB。 图 1-1 只有当信号电平远大于系统底噪时, 才会显示出相位噪声 图1-2
[测试测量]
频谱分析仪使用常见问题解答
频谱分析仪是一种多用途的电子测量仪器,它主要是测量信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数。长期的使用频谱分析仪,会由于种种因素出现故障的发生。小编在此总结出6条频谱分析仪常见问题,供大家了解。 1.怎样设置才能获得频谱仪最佳的灵敏度,以方便观测小信号 A:首先根据被测小信号的大小设置相应的中心频率、扫宽(SPAN)以及参考电平;然后在频谱分析仪没有出现过载提示的情况下逐步降低衰减值;如果此时被测小信号的信噪比小于15dB,就逐步减小RBW,RBW越小,频谱分析仪的底噪越低,灵敏度就越高。 如果频谱分析仪有预放,打开预放。预放开,可以提高频谱分析仪的噪声系数,从而提高了灵敏度。对于信噪比不高的小
[测试测量]
基于LabVIEW和DSP技术的FFT频谱分析仪
1 虚拟仪器概念和特点 虚拟仪器是虚拟技术在仪器仪表领域中的一个重要应用。它是日益发展的计算机硬件、软件和总线技术在向其他技术领域密集渗透的过程中,与测试技术、仪器仪表技术密切结合孕育出的一项新的成果。20世纪80年代,NI公司首先提出了虚拟仪器的概念,认为虚拟仪器是由计算机硬件资源、模块化仪器硬件和用于数据分析、过程通信及图形用户界面的软件组成的测控系统,是一种由计算机操纵的模块化仪器系统。虚拟仪器是以计算机作为仪器统一的硬件平台,充分利用计算机独具的运算、存储、回放、调用、显示以及与文件管理等基本智能化功能,同时把传统仪器的专业化功能和面板控件软件化,使其与计算机融为一体,构成了从外观到功能都完全与传统硬件仪器
[测试测量]