差分探头测量的是差分信号。差分放大原理是指一对信号同时输入到放大电路中,然后相减,得到原始信号。差分放大器是由两个参数特性相同的晶体管用直接耦合方式构成的放大器。若两个输入端上分别输入大小相同且相位相同的信号时,输出为零,从而克服零点漂移。差分信号和普通的单端信号走线相比,较为明显的优势体现在以下三个方面:
抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被较大程度抵消。
能有效抑制EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。
时序定位准确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。目前流行的LVDS就是指这种小振幅差分信号技术。
差分放大原理是指一对信号同时输入到放大电路中,然后相减,得到原始信号。差分放大器是由两个参数特性相同的晶体管用直接耦合方式构成的放大器。若两个输入端上分别输入大小相同且相位相同的信号时,输出为零,从而克服零点漂移。
电流探头是一种有源探头,是示波器测量电流的*配件,而有源探头只是个广泛的说法,是指需要供电的探头。有源探头的输入阻抗高、带宽也高。
其结构是根据法拉第原理设计的,用来测量导线中干扰电流信号的磁环,本质上是一个匝数为1的变压器。使用电流探头能够测量流经导线的电流大小。分为AC/DC以及AC。前者可以测量直流以及交流电流的大小,后者只可以测量交流电流的大小。
电流探头一般情况分为三类:
一、柔性探头:此类探头一般只对交流电流的测量,电流量程可以高达几千A,美中不足的是不能对直流电流的测量,还有就是误差较大。
二、低频电流探头:此类探头是通过霍尔传感器来采集信号,优点是可以进行交直流的测量且电流量程相对较大,缺点是当频率稍高时候就无法准确采集到信号了,有时候会导致对信号的误判。低频一般用于对工频信号的测量,类似于50HZ//60HZ的市电,或者UPS生产制造企业。
三、高频电流探头:此类探头是由霍尔传感器和磁电传感器共同完成对信号的采集的,低频部分交给霍尔传感器来处理,高频部分交给磁电传感器来处理。这样完成对整个频率段的覆盖。
高频电流探头同样能够对交直流电流的测量,优点是能够捕获到高频率的电流信号,可以完整的把信号变化细节体现出来,缺点是受限于核心器件的瓶颈,电流量程相对较小。主要应用于开关电源的设计,电机驱动的调试等需要用到20K以上频率的场合。从带宽角度来定义的话,至少是M级以上的带宽才算高频电流探头。
探头对示波器的测量至关重要,首先要求探头对探测的电路影响必须达到小,并希望对测量值保持足够的信号保真度。如果探头以任何方式改变信号或改变电路运行方式,示波器看到实际信号会失真比较严重,进而可能导致错误的或者误导性的测量结果。通过以上介绍得出,探头的选购和正确使用有许多值得我们注意的地方。
关键字:电流探头 差分探头 差分信号
引用地址:
电流探头与差分探头,区别可不止一星半点
推荐阅读最新更新时间:2024-11-08 19:13
可提供差分信号的仪表放大器IC
仪表放大器(in-amps)是专用的精密增益运放,担负着极具挑战性的任务:处理来自类似脑电图(EEG)或应变计的低电平输入信号。这些信号往往伴随有大量共模噪音,仪表放大器需要从噪音中提取信号。现在,越来越多的应用要求这种放大器必须为信号链的下一级(典型的是A/D转换器)提供差分驱动输出。 差分信号之所以受到青睐的原因是它们增强了对来自板级和IC内共模噪音的抵抗能力,这些噪音来自于附近的数字信号,并会随着工作电压的降低进一步恶化。与单端输出相比,差分信号将动态范围和信噪比这两项关键指标提高了6dB。 ADI的仪表放大器专家们不断受到来自设计师的“反推动”,ADI的产品经理Scott Pavlik表示,这些工程师不得不
[模拟电子]
示波器测试信号时该如何接地来避免短路呢?选择差分探头就可以!
有时候示波器测量存在电势差的电路系统往往是危险的,这种危险可能来源于设备内部的短路,也可能来自电势本身。作为技术人员或者电子工程师,我们经常会遇到这样的一些测量的困难,比如测量三相电,亦或测量市电供电的被测体,其地线连接着电源,而同时示波器的各个通道也是共地的,并且连接着电源。那当我用示波器测试信号的时候,我该如何接地来避免短路呢? 对于这个问题,也许有的人会说,把示波器供电处的接地端断开就可以了。但是这样可能会导致探头夹子和示波器金属部位带电,从而存在安全隐患。 这个时候一般有5种解决方案。第一是使用带隔离通道的示波器,另外一种是使用差分探头来进行测量。或者采用A-B伪差分测法,或者采用浮地测量,或者
[测试测量]
一种EMI电流探头的校准方法
1 引 言 EMI电流探头是一种卡式电流传感器,专门用于测量线(单/多根电缆束、接地线/带状线束、屏蔽线外导体及同轴电缆)上的干扰电流。测试时只需将它夹在被测线上而不需要与被测源导线导电接触,也不用改变其电路。这样复杂的导电系统/电子线路等的干扰测量就可以在不打乱其正常工作或正常布置的状态下进行。探头夹到被测线上进行测量时,被测导线充当变压器的初级,次级则包含在电流探头中。电流探头(次级)设计为可直接连接到50Q系统的测试仪器,如接收机/频谱仪等。电流探头附加的屏蔽结构可以测量非对称(共模)干扰电流或对称(差模)干扰电流。 电流探头根据其型号不同,其测试频率范围从25 Hz到1 000 MHz,连续波电流从几安到几十安,脉
[测试测量]
差分探头和隔离探头有什么区别
有时,示波器测量电位差的电控系统通常是危险的。这种风险可能来自机器设备的短路故障或电位差本身。作为专业技术人员或电子工程师,我们经常会遇到一些测量困难,如测量三相电源或测量电压供电系统的测量体。接地线连接到开关电源。同时,示波器的每个安全通道也是普通的,并且连接到开关电源。在我用示波器检测数据信号的情况下,我该如何接地装置来防止短路故障? 针对这个问题,也许有人会说,断开示波器供电系统处的接地线端就可以了。不过这样可能会造成探头夹子和示波器金属材料位置通电,进而存在安全风险。此时一般有五种解决方案。首先它是一种带隔离安全通道的示波器,另一种是用差分探头进行测量。或是选用A-B伪差分测法,或选用浮地测量,或用隔离变电器隔
[测试测量]
差分探头在示波器、信号源、功率放大器的应用
示波器是电子工程师最常用的测量仪器,而示波器探头毫无疑问是示波器最常用的配件。示波器探头是连接被测电路与示波器输入端的电子部件。换句话说,如果要获得更好的信号保真度,仅关注示波器本身是不够的,因为如果信号已经在探头处失真,那么无论示波器的质量如何,它都是没有用的。 BNC是无源探头,无源探头是最常见的探头,在购买示波器的时候厂家会有标配探头。无源探头常见,且容易使用。 差分探头测量的是差分信号。差分信号是互相参考,而不是参考接地的信号。差分探头可测量浮置器件的信号,实质上它是两个对称的电压探头组成,分别对地段有良好绝缘和较高阻抗。差分探头可以在更宽的频率范围内提供很高的共模抑制比。差分信号和普通的单端信号走线相比,最明显的
[测试测量]
知用电流探头使用注意事项
知用电流探头拥有标准的BNC输出接口,可完美兼容任何厂家的示波器,是高性价比的国产电流探头,由于探头是易耗品,很容易损坏,进口示波器电流探头一般价格比较贵,很多客户都会选择知用电流探头替代,安泰测试作为知用电流探头的代理,今天给大家分享一下知用电流探头使用注意事项及异常处理方法,帮助大家正确使用探头。 一、知用电流探头使用注意事项: 1、该机器的输出终端设置在内部,使用示波器时,请选择高输入电阻的(1MΩ)。若输入电阻为 50Ω,则不能正确测量。 2、确保被测电流不要超过最大电流。超过额定值,磁芯会饱和。磁芯饱和会导致在饱和的过程中发生波形部分被削掉,过大的冲击电流,甚至会导致磁芯无法正确消磁,需重新调零。 3、插入电源后,本
[测试测量]
高压差分探头测试实例分析
探头的种类很多,其中高压差分探头在开关电源应用中十分广泛,然而很多工程师对差分探头的理解不是很深刻,市场上差分探头生产厂家也不少,性能指标各不相同,甚至相差甚远,造成测出的波形也不尽相同,工程师无法看到正确波形。下面PRBTEK给大家讲述高压差分探头测试实例分析及使用技巧。 首先我们先来了解差分信号。差分信号是互相参考,而不是参考接地的信号。例如,图1开关电源中半桥上下开关管(Q1,Q2管)中电压信号;图2多相电源系统中电压信号,以上信号在本质上是“漂浮”在地之上。 图1开关电源中的开关管上的差分信号 图2 多相电源系统中的差分信号 高压差分探头测试实例分析 1、差分探头测试半桥电路中MOS管的DS极间电压 以下是利用
[测试测量]
高压差分探头在GaN材料MOSFET管测试的应用
GaN材料主要应用于偏低压应用例如800V以下的应用,像高功率密度DC/DC电源的40V-200V增强性高电子迁移率异质节晶体管(HEMT)和600V HEMT混合串联开关。当然现在也有800V以上的一些应用也是用GaN材料的。在这些应用中需要选用高压差分探头进行测试。 SiC材料主要偏向高压的应用。因其具有承受高温(300℃左右温度是没有问题的)的特点主要应用场景是在汽车和光伏逆变器等领域。这些器件的应用会对整个电源系统有很大的改进。 综上所诉,针对宽禁带材料功率器件的测试,我们需要的是包括示波器、示波器探头以及测试软件的一套完整的测试系统。其中,对示波器探头的具体要求如下: (1)电气性能符合要求-带宽、输入电压范围(
[测试测量]