图一电路为一完备的电源管理方案,适用于PDA、手持式盘点机、POS 机等中等功率便携式设备。该方案中,输入为一不稳定的直流(墙上适配器或其它AC-DC 转换器)或2 节AA 电池,输出主电压3.3V/500mA。电路中还包括一节锂电池,当墙上适配器或主电池电压不起作用时,锂电池为RAM 提供3.3V 备用电源(3.3V RAM 点)。升压转换器U4 输出-20V/20mA, 为LCD 供电。
图一
图中,U1 为降压型开关转换器,具有较宽的输入电压范围(5V 至16V),可由墙上适配器或汽车电池提供电源;输出电压为3.4V,同时对输入电压进行检测,一旦输入电压无效时将自身控制器关断。U2 为升压型开关转换器,将两节AA 电池电压转换成3.3V 输出,输出电流500mA,转换效率达90%。U1、U2 的输出连接在一个点上(3.3V MAIN),当墙上适配器提供电源时,U2 检测到输出端电压为3.4V,高于调节电压,U2 将处于空闲模式,电源电流仅1μA。
稳压型电荷泵U3 能够将1.8V 到3.6V 范围内的输入电压转换成稳定的3.3V 输出,当系统没有加交流电和主电池时,U3 输出为RAM 提供备用电压。U3 采用μMAX 封装,一旦交流电源或主电池正常供电,U3 将保持关断模式,此时耗电仅1μA。
升压型控制器U4为LCD提供偏置电压,在该电路中被设置为负电压输出,内部电路由3.3V 主电源供电,将墙上适配器输出电压或主电池电压转换成-20V 输出,输出电流20mA,转换效率为75%。任何情况下,U4 均不采用锂电池供电。当墙上适配器有效时,Q2 断开,阻止电池电流流入电感L3;未接入墙上适配器时,Q2 导通,电池为L3 供电。
U5 为比较器,内置1.25V 基准电源。上电时,Q1 的体二极管允许U5 由3.3V MAIN 供电;启动后,U5 输出低电平,Q1导通,则3.3V RAM 由3.3V MAIN 提供,同时,U5 的低电平输出使U3 保持关端状态。当U5 检测到墙上适配器与主电池均被移掉时,产生一高电平输出唤醒U3,为3.3V RAM 提供稳定的3.3V 电压。在电源切换瞬间,U5 由V+端的旁路电容保持供电。此外,U5 的高电平输出使Q1 断开,避免3.3V RAM 馈送到3.3V MAIN.
关键字:适配 转换 输入 空闲
引用地址:完备的中等功率电源管理方案
图一
图中,U1 为降压型开关转换器,具有较宽的输入电压范围(5V 至16V),可由墙上适配器或汽车电池提供电源;输出电压为3.4V,同时对输入电压进行检测,一旦输入电压无效时将自身控制器关断。U2 为升压型开关转换器,将两节AA 电池电压转换成3.3V 输出,输出电流500mA,转换效率达90%。U1、U2 的输出连接在一个点上(3.3V MAIN),当墙上适配器提供电源时,U2 检测到输出端电压为3.4V,高于调节电压,U2 将处于空闲模式,电源电流仅1μA。
稳压型电荷泵U3 能够将1.8V 到3.6V 范围内的输入电压转换成稳定的3.3V 输出,当系统没有加交流电和主电池时,U3 输出为RAM 提供备用电压。U3 采用μMAX 封装,一旦交流电源或主电池正常供电,U3 将保持关断模式,此时耗电仅1μA。
升压型控制器U4为LCD提供偏置电压,在该电路中被设置为负电压输出,内部电路由3.3V 主电源供电,将墙上适配器输出电压或主电池电压转换成-20V 输出,输出电流20mA,转换效率为75%。任何情况下,U4 均不采用锂电池供电。当墙上适配器有效时,Q2 断开,阻止电池电流流入电感L3;未接入墙上适配器时,Q2 导通,电池为L3 供电。
U5 为比较器,内置1.25V 基准电源。上电时,Q1 的体二极管允许U5 由3.3V MAIN 供电;启动后,U5 输出低电平,Q1导通,则3.3V RAM 由3.3V MAIN 提供,同时,U5 的低电平输出使U3 保持关端状态。当U5 检测到墙上适配器与主电池均被移掉时,产生一高电平输出唤醒U3,为3.3V RAM 提供稳定的3.3V 电压。在电源切换瞬间,U5 由V+端的旁路电容保持供电。此外,U5 的高电平输出使Q1 断开,避免3.3V RAM 馈送到3.3V MAIN.
上一篇:开关电源的EMC设计
下一篇:基于IR2161的低压卤素灯电子变压器
推荐阅读最新更新时间:2024-05-13 18:38
带精密电源基准电平转换的高性能差分放大器
采用小尺寸工艺设计的高性能ADC通常采用1.8V至5V单电源供电。为了处理±10 V或更大的信号,ADC一般前置一个放大器电路以衰减该信号,防止输入端饱和。在信号包含大共模电压时普遍采用差分放大器(diff amp)。
差分放大器抑制共模电压的能力由增益设置电阻的比率匹配决定;匹配度越高,共模抑制比(CMR)越高。对于采用0.1%外部电阻的离散放大器,CMR限制为54 dB。集成紧密激光调整的电阻和运算放大器的IC可实现高于80 dB的CMR。
如同许多其他模拟IC,早期的差分放大器一般采用±5V至±15V双电源供电。随着ADC和其他元件趋向于采用更低电源电压,有一段时间差分放大器成为前端唯一需要双电源的电路。但为这一个电
[电源管理]
STM32单片机串口空闲中断+DMA接收不定长数据
在上一篇文章STM32单片机串口空闲中断接收不定长数据中介绍了利用串口空闲中断接收不定长数据,这种方式有一个问题就是串口每接收到一个字节就会进入一次中断,如果发送的数据比较频繁,那么串口中断就会不停打断主程序运行,影响系统运行。那么能不能在串口接收数据过程中不要每接收一个数据中断一次,只有在一帧数据接收结束完成后只中断一次? 用串口的空闲中断加上DMA功能,就可以实现每帧数据接收完成后只中断一次,而在数据接收过程中,由DMA存储串口接收到的每个字节。 关于串口的空闲检测和DMA在STM32参考手册中有详细介绍。 下面看如何初始化串口空闲中断和 DMA。 void uart2_init( u16 baud )
[单片机]
采用仿纹波模式轻松实现降压转换
20年前,简单易用的集成开关稳压器的问世带来了电源管理技术革命。此前,大多数的应用都是采用线性稳压器作为电源电压以及复杂的专有开关式电源。而今,美国国家半导体著名的Simple Switcher系列DC-DC稳压器已被广泛应用在各式各样的设计中。在实现Simple Switcher电源的环路稳定性方面,有两个方法可以采用:一是固定的内部补偿,但这个方法会影响设计人员选择输出级电感器和电容器时的自由度;二是从外部作补偿,这方法虽然可带给设计人员较大的电源级元件选择灵活性,但却会使设计过程变得更为复杂。
一种全新的控制方式 – 仿纹波模式(ERM)现已应用在Simple Switcher最新的降压稳压器产品上,可以有效的简化电源设
[电源管理]
DC/DC转换器MC34063的应用
MC34063由于价格便宜,开关峰值电流达1.5A,电路简单且效率满足一般要求,所以得到广泛使用。在ADSL应用中,MC34063的开关频率对传输速率有很大影响,在器件选择及PCB设计时需要仔细考虑。 线性稳压电源效率低,所以通常不适合于大电流或输入、输出电压相差大的情况。开关电源的效率相对较高,而且效率不随输入电压的升高而降低,电源通常不需要大散热器,体积较小,因此在很多应用场合成为必然之选。开关电源按转换方式可分为斩波型、变换器型和电荷泵式,按开关方式可分为软开关和硬开关。 斩波型开关电源 斩波型开关电源按其拓扑结构通常可以分为3种:降压型(Buck)、升压型(Boost)、升降压型(Buck-boost)。降
[电源管理]
8031单片机用74ls373输入、74ls377输出编程
用74ls373输入(P2.7片选),74ls377输出(P2.6片选),试编制程序,从373依次读入十个数据,取反后,从377输出。 图片1 答案: 74LS373(输入):7fffh 74LS373(输入):bfffh MOV R7,#10 MOV R0,#30H MOV DPTR,#7FFFH LOOP0: MOVX A,@DPTR CPL A MOV @R0,A INC R0 DJNZ R7,LOOP0 MOV R7,#10
[单片机]
PWM DC/DC转换器之问的关系
PWM DC/DC转换器的主电路可以分为两大类:即不带高频变压器的非隔离式PWM DC/DC转换器与带高频变压器的隔离式 PWM DC/DC转换器。它们彼此之间的关系如图所示。
如图 PWM DC/DC转换器主电路之间的关系
对于不带高频变压器的非隔离式PWM DC/DC转换器中,最基本的转换器是Buck转换器和Boost转换器。如图中其他的转换器都是由这两种转换 器演化派生出来的。本章前面对此已进行了较为详细的阐述,这里仅给出结论。
(1)Buck Boost转换器(反相型,是指输出电压Uo的极性和输入电压Ui的极性上端与下端相反)是由Buck转换器和Boost转换器串联而成的,它 将两只开关管
[电源管理]
用于软件无线电12 b A/D转换器设计
本文设计的用于软件无线电台12 b A/D转换器中的高精度,高速运算放大器,采用了增益提高电路,在不影响频率响应的同时,得到普通运放所达不到的高增益。 1 高精度,高速度模数转换器对运算放大器指标的要求 为了达到12 b的A/D,第一级转换器出来的信号误差必须要小于后级所能辨认的最小精度,比如本文需要设计第一级的运算放大器,他后面一级的最小分辨力是10 b,那么,所设计的这个放大器的误差系数。 本文设计的运算放大器,用在12 b模数转换器中,模数转换器采用流水线结构,每一级的比特数为2.5 b,电路的方框图如图1所示。 图1中放大器接成负反馈形式,CS是输入采样电容,Cf是环路反馈电容,在2.5 b每级的应
[模拟电子]
- 热门资源推荐
- 热门放大器推荐
- ICCV2023论文汇总:Fairness, Privacy, Ethics, Social-good, Transparency, Accountability in Vision(视觉中的公平、隐
- ICCV2023论文汇总:Faces and Gestures(人脸和手势识别)
- ICCV2023论文汇总:Explainable AI for CV(计算机视觉的可解释人工智能)
- ICCV2023论文汇总:Efficient and Scalable Vision(高效和可扩展视觉)
- 面向自然语言处理的深度学习:用Python创建神经网络
- 东芝1200V SIC SBD “TRSxxx120Hx系列” 助力工业电源设备高效
- 贝叶斯方法:概率编程与贝叶斯推断
- 脉宽调制DC-DC全桥变换器的软开关技术