基于MATLAB的高功率因数整流器仿真实验平台

最新更新时间:2009-09-08来源: 电子设计工程关键字:仿真  功率因数  高功率因数整流器  电流解耦控制 手机看文章 扫描二维码
随时随地手机看文章

  1 概述

  简单系统可直接建立模型,并分析模块之间的相互关系以及模块输入输出关系。但对相对复杂的系统,Simulink包含多个模块,使得各个模块之间的相互关系非常复杂,不利于分析。为此,可将具有一定功能的模块群进行封装,用户不必了解其内部结构,只需了解其功能和输入参数即可。而且每个模块可移植。仿真实验平台封装的主要模块包括:典型的单相整流器主电路,三相全控桥整流器主电路,检测模块(坐标变换),脉冲产生模块,控制模块,测量模块等。通过仿真得到三相可逆PWM整流器的主电路电感值、开关频率等参数,并影响到输入电流总谐波失真(THD)、电源功率因数以及系统输出直流电压,从而为实际设计确定主电路的参数提供可靠依据,对三相可逆PWM整流器设计具有实际意义。

  2 模块库的建立

  仿真平台的建立是通过在Simulink Library Browser下面创建一个自己的模块库实现,新建库名为kongde。用右键打开模块库,并将自己封装的模块添加到库中。添加完所有模块并保存之后,点击Simulink Library Browser下面的kongcle,便显示了该模块库中的所有模块,如图1所示。仿真时,只需将各个功能模块从模块库中添加到模型文件中,设置相应的参数,并把各个功能模块按照原理连接即可观察结果。

  3 模块封装

  3.1 整流器主电路

  所建的整流器主电路采用阻感负载。三相电压型PWM整流器主电路如图2所示。对于Simulink依据整流器的数学模型,采用开关函数微分方程组搭建模型,仿真运算速度较快。由于模块库对诸如IGBT的缓冲电路参数,开关延时等参数有细致建模,故而更接近真实情况,如图3所示。

  3.2 控制模块

  仿真时所用的控制模块是基于空间电压矢量的电流解耦控制算法,电流解耦控制模块如图4所示。

  3.3 功率因数测量模块

  因数测量包括功率因数、基波位移因数、畸变因数、以及有功功率、无功功率、视在功率等。对于三相系统,如果三相电压电流波形对称,则有功功率为三相有功之和,无功功率为三相无功之和,如图5所示。此模块可测量三相系统功率因数,以及有功、无功、视在功率等。

[page]

  4 基于仿真模块的三相VSR系统的仿真

  整个系统是由一个电压环和2个电流环组成的双内环单外环的双环控制结构,电压环不仅控制直流输出电压,并将电压环调节器的输出作为有功电流id的给定,无功电流iq的给定可以直接设为零。在电流电压双环系统中,作为内环的电流环直接决定着整个系统动静态特性的优劣。整个系统的仿真模型如图6所示,该系统包括主电路模块、检测模块、电流解耦控制模块、SVPWM模块以及测量模块。该模型中的主要模块均从kongde模块库中添加,按照功能连接好相应模块即可仿真。设置系统参数,具体参数如表l所示。

  设置好参数后可对系统仿真。突增负载时交流侧电压、电流波形与直流侧负载波形如图7所示;突增负载时交流侧三相电流波形如图8所示;突减负载时交流侧电压电流波形与直流侧负载波形如图9所示;突减负载时交流侧三相电流波形如图10所示。

  通过仿真结果可以看出:基于空间电压矢量的电流解耦控制算法,使三相VSR在稳态时交流侧电流波形对称且为正弦,相电流与相电压同相位,且直流侧电压稳定,负载突变时,电压有一定波动,但很快在一个周波内跟上给定值,可见系统具有较强的鲁棒性。通过测量可知,三相系统的功率因数近似为1,并测量其中一相的电压、电流,测得基波位移因数以及畸变因数均近似为l。在暂态过程中,电流具有快速的跟随性能,系统暂态过渡时间短。在负载突变发生时,都能保持正弦电流波形,并且保持高功率因数运行。三相VSR的基于空间电压矢量的电流解耦控制,直流侧电压更稳定,纹波更小,功率因数较高。同时三相VSR亦可运行在单位功率因数逆变状态。

  5 结语

  所建立的仿真平台可提供一个更深入学习基本理论的机会,而不是仅限于书本知识,在仿真过程中。必然会碰到各种问题,通过改变各种参数来分析波形,从而分析参数对整个仿真系统的影响。仿真平台有一定局限性,只对几种常见的整流器进行封装,同时有些参数固定,比如PWM周期(0.02 s),若要改变周期,同时也得改变电源周期,这些还有待改进。

关键字:仿真  功率因数  高功率因数整流器  电流解耦控制 编辑:金海 引用地址:基于MATLAB的高功率因数整流器仿真实验平台

上一篇:基于双IGBT的斩波式串级调速系统的研究
下一篇:探讨采用绿色塑料封装的功率MOSFET性能

推荐阅读最新更新时间:2023-10-18 14:49

stm32软件仿真调试
下面是一个单片机STM32RCT6的PA8,PA9,PA10引脚输出PWM波形的仿真步骤,此外还展示了软件运行过程,如何查看全局变量的实时数据。每一步我都做了截图,大家照着一步步来,请大家放心参考! 1.点target图标,如下: 2.选择好单片机芯片的型号:我选的STM32RCT6型号,大家可以根据自己手上stm32开发板的型号来选择 3.外部晶振频率的选择:8Mhz(因为大部分单片机的外部晶振是8Mhz),为了使仿真更贴近实际,通常情况下都是选8Mhz 4.进入Debug页面进行设计,特别要注意第四点parameter,注意选正确好芯片的型号,我的是RC系列,所以写了RC,如果是RB系列,
[单片机]
stm32软件<font color='red'>仿真</font>调试
单片机四层电梯控制系统设计最终版(含仿真+报告+程序源码)
在1901年的上海,美国奥的斯公司安装了中国最早的一座电梯,而今,我国电梯业已进入了高速发展的时期,商场、医院、宾馆、仓库、住宅大楼等地方的电梯都被广泛应用着,直接与人们的生活息息相关,给人们的生活带来了极大的便利,是一种必不可少的垂直运输交通工具。 抛开一些复杂的概念,单片机在我们的生活中触手可及,尤其是在智能仪表,实时控制,机电一体化,办公机械,家用电器等方面拥有广泛的应用领域。这次课设注重对单片机的理解应用,明白单片机的工作原理,掌握单片机的接口技术,中断技术,存储技术,时钟方式和控制方式,这样才能更好地利用单片机来做有效的设计,提高自己的综合能力。 1. 设计任务 结合实际情况,基于AT89C52单片机设计一个四层
[单片机]
单片机四层电梯<font color='red'>控制</font>系统设计最终版(含<font color='red'>仿真</font>+报告+程序源码)
缺少仿真器时AVR单片机的开发方法
对FLASH存贮器单片机,不要仿真机也能方便快速地开发程序。具体可以从以下几方面入手: 一、尽量使用高级语言开发系统程序 您有没有在写汇编程序时,标错一个标号而浪费您大把时间找错或跳转偏移量过大而不得不改动程序结构的经历。其实您如果使用高级语言开发程序,就不会有这样的痛苦。 在开发程序时,除了建立一个良好的开发文档外,使用语言的选择也很重要。有许多人认为使用汇编写程序比较精简,而用高级语言开发会浪费很多程序空间,其实这是一种误解。对一个有经验的,而且非常熟悉某种单片机的汇编高手而言,他是能写出比高级语言更精简的代码。而对汇编不是很熟的开发者、或突然更换了一种新的单片机,您能保证一定可以写出比高级语言更简练的代码吗? 高级语言的优越
[单片机]
什么叫电源的功率因数
  PFC是电脑电源中的一个非常重要的参数,全称是电脑功率因素,简称为PFC,等于“视在功率乘以功率因素”,即:功率因素=实际功率/视在功率。 功率因素:功率因数表征着电脑电源输出有功功率的能力。   PFC是电脑电源中的一个非常重要的参数,全称是电脑功率因素,简称为PFC,等于“视在功率乘以功率因素”,即:功率因素=实际功率/视在功率。 功率因素:功率因数表征着电脑电源输出有功功率的能力。功率是能量的传输率的度量,在直流电路中它是电压V和电流A和乘积。在交流系统里则要复杂些:即有部分交流电流在负载里循环不传输电能,它称为电抗电流或谐波电流,它使视在功率( 电压Volt乘电流Amps)大于实际功率。视在功率和实际功率的不等引
[电源管理]
0~100 mV精密电压源的设计与仿真
    0~100 mV精密电压源是航空发动机温度控制盒等重要控制系统定检时必不可少的激励信号源,设计时要求该精密信号源的输出信号偏移量ΔUomax≤0.02 mV,最大输出驱动电流Iomax=20mA,输出范围:0≤Uo≤100 mV,对系统的稳定性要求非常高。对此要求,传统的精密电压源一般采用模拟电路,由精密电位器调节生成,需要很高的D/A分辨率和抗干扰能力 。这种电压源不但操作不方便,而且随温度等外界条件影响较大,因而还要加上恒温箱和冷却风扇等辅助措施,大大增加了定检设备的体积和成本,而且输出精度和驱动能力也难以满足要求。     针对上述问题,本文提出了一种新的设计方案。为确保系统软硬件设计的正确性和缩短开发周期,本文基于
[电源管理]
0~100 mV精密电压源的设计与<font color='red'>仿真</font>
单片机数字频率计仿真设计0~9000hz 数码管显示
/************************************************************************* *实例名称:频率计 *实例说明:实现0~9000hz频率计的统计 *作者:yd *时间:09.06.20 *************************************************************************/ #include target.h #include led.h uchar displayBuff ={'0','0','0','0'}; //数码管显示缓冲区
[单片机]
单片机数字频率计<font color='red'>仿真</font>设计0~9000hz 数码管显示
基于修正的M距离辐射源识别方法及计算机仿真
摘要:提出了一种基于修正的M距离辐射源识别的新方法。该方法对各特征参数作加权值处理,得到一种新的相似性度量标准,大大提高了识别的准确性。通过计算机仿真,验证了该方法的合理性与有效性。 关键词:M距离 辐射源 识别 数据库 现代战场电磁环境日益密集、复杂,如何快速、准确地对辐射源进行识别已成为电磁斗争领域的一项紧迫任务。一般来说,无源探测系统通过对辐射源辐射信号的处理,得到反映辐射源特征的特征量,由这些特征量根据一定的算法完成对辐射源的识别。这里提到的识别主要是指对辐射源的类型作出判断,若能预先知道辐射源与载体之间的搭配关系,则可进一步实现对辐射源载体的识别 。目前,对辐射源识别方法的研究很多,包括人工识别方法、传统的数据处理
[应用]
光耦仿真器登场,引脚、电气全兼容!
如今大热的工厂自动化、电机驱动、电网基础设施和电动汽车应用中,电压动辄几百伏,甚至数千伏。如何更好的保护电子设备和操作人员的安全,提高电路的抗干扰能力,同时仍支持信号和/或电源传输,电隔离必不可少。 光耦——作为专有的隔离技术,在长达50年的时间里,一直是隔离设计人员的首选。最早的形式包括初级侧的微型白炽灯泡、作为绝缘或介电层的光学透明塑料、以及次级侧上由所照射光量度进行调制的光敏电阻器。后来使用了LED来跨隔离层(通常是空气间隙或介电强度比空气稍好环氧树脂)传输数字或模拟信息。 典型光耦结构 但随着工业和汽车领域对高可靠性、更长使用寿命和更高信号完整性的需求不断增长,光耦的局限性也渐渐暴露出来。由于绝缘材料容
[模拟电子]
光耦<font color='red'>仿真</font>器登场,引脚、电气全兼容!
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved