新型EPS电源工作过程及仿真研究

最新更新时间:2009-12-25来源: 现代电子技术关键字:EPS  PWM整流器  充电  放电  Matlab 手机看文章 扫描二维码
随时随地手机看文章

1 传统EPS应急电源

    工程供电设计中对于一、二类重要负荷需要考虑供电连续性的措施。除了双电源,双回路供电外,还需配有应急电源。应急电源是与电网在电气上独立的各种电源,包括柴油发电机组和蓄电池,其中蓄电池又分为。EPS(Emergen-cy Power Supply)和UPS(Uninterruptable Power System)。

    EPS应急电源是以CPU为核心,加上整流充电模块、逆变放电模块、旁路切换模块和蓄电池组成的智能供电模块,采用电子集成模块化结构的强弱电一体化系统,是一种高科技环保产品。他在紧急的情况下作为重要负荷的第二或第三电源供给,可望替代不少场合的柴油发电机组和UPS。采用智能芯片控制,维护简单,自动操作,市电异常时,一般指市电小于187 V或高于242 V,自动切换,切换时间小于0.5 s,可无人值守;采用IGBT逆变桥PWM控制,供电电压稳定,逆变频率稳定,波形好;平时处于睡眠状态(浮充),逆变桥不工作,电能损耗小,放电效率高。主要适用于电梯、消防、安防、应急照明、医院手术室和实验室等重要场合。传统的EPS采用后备式结构,如图1所示。

    当市电正常供电,切换开关Ks接通市电,应急电源处于整流状态,蓄电池浮充,逆变电路不工作。当市电异常时,切换开关接通逆变电路,应急电源进入逆变放电过程,并停止充电;同时,检测蓄电池组端电压,当端电压小于放电终止电压时,蓄电池放电完毕,停止放电。再加上蓄电池组过压、欠压保护;输出交流过压、过流、高温、短路保护等功能就组成了传统EPS应急电源的全部功能。

2 新型EPS应急电源

    根据传统的EPS应急电源,任何时候充电电路与逆变电路都只有一个电路工作,是一种互斥关系,而且需要配置两套驱动电路,分别驱动整流桥和逆变桥。在结构上有一定的臃肿,控制复杂、功耗大、成本高。充电电路与放电电路都是由IGBT及二极管组成的桥路,他们的驱动电路都是IGBT驱动芯片及其一些外围电路组成,结构完全相同。新型EPS就是把充电、放电两部分电路合为一体,结构简单,控制简易,系统可靠性也相对提高,更重要的是产品成本低,功耗也相对减少一半。PWM整流器是其重要理论依据和出发点。

2.1 PWM整流器的特点

    PWM整流器采用全控型开关管取代传统的半控型开关管或二极管,以PWM斩控整流取代了相近整流或不控整流,具有以下几大优良性能:

    (1) 交流侧电流正弦波;

    (2) 交流侧功率因数可控(如单位功率因数控制);

    (3) 电能双向传输;

    (4) 较快的动态控制响应。

    显然,由于电能的双向传输,PWM整流器就已经不是传统意义上的AC/DC变换器了,当PWM整流器从电网吸收电能时,其运行于整流工作状态,作为整流器工作;而当PWM整流器向电网传输电能时,其运行于逆变状态,作为逆变器工作,所以PWM整流器是集整流与逆变于一身的新型变换器。具体工作原理不做详细介绍。

2.2 新型EPS工作原理

    新型的EPS应急电源工作原理如图2所示:

    可以看出,他也是后备式电源。在结构上"充电电路"与"逆变电路"合并为一个整流/逆变电路,即PWM整流器。他能够实现传统的EPS宽/放电的功能,具体的工作过程是这样的:当市电正常时,Ks合并,即市电同时给负载和电池供电,PWM整流器工作于整流状态,蓄电池浮充。当市电异常时,为了防止电能回馈电网,Ks断开,由电池给负载供电,PWM整流器工作于逆变状态,蓄电池放电。同时,检测蓄电池端电压,直到端电压下降到放电终止电压时,即蓄电池放电完毕,自动关闭PWM整流器。应该重新充电才能重新使用。由于PWM整流器能够进行控制功率因数,所以给定电流信号应与电网电压同相(整流),或者反向(逆变),实现单位功率因数控制,净化电网,提高效率。

3 新型EPS工作过程及仿真

3.1 新型EPS工作过程分析

    新型EPS的功能应该满足传统EPS的功能和蓄电池的充电要求。这里所说的蓄电池是指阀控铅酸蓄电池。蓄电池理想充电电流是指数下降的。一般情况下,蓄电池的充电过程可分恒流充电,恒压充电和浮充三个过程。当市电异常时,蓄电池放电给负载供电,PWM整流器进入逆变放电状态,即无源逆变过程。

     蓄电池在使用过程中,容量是不断下降的,当电池容量衰减至初始值的80%时,进入快速失效期,容量衰减加快,普遍认为容量低于初始值的80%的蓄电池为失效电池。所以电池容量检测是至关重要的。根据PWM整流器能量双向传输的优点,可以采用放电法进行容量检测,并把所放出来的电放回电网,既安全,又高效。具体的过程是这样的:

    当系统工作过程转入容量检测过程后,控制放电电流为一恒定负值I*(充电方向为正)。此时,蓄电池作为电源,电网作为负载,PWM整流器工作在有源逆变状态。当电流稳定到给定值I*后,开始计时。同时,循环检测各单节电池电压,有任一个单节电池电压低于规定值时,放电完毕,读取放电时间T。那么电池容量就是I*·T(安时)。当测量完成后,马上对蓄电池进行充电,减少电网突然断电的危险性。

    可见,新型EPS的工作过程可分为5种:恒流充电过程、恒压充电过程、浮充过程、无源逆变过程和有源逆变过程。其中恒压充电过程与浮充过程的控制方案是相同的,电压给定值不同;恒流充电过程与有源逆变过程的控制方案也是相同的,他们最大区别是电流给定值相反,大小也不相同;无源逆变过程则是一般的电池逆变过程,只要控制输出电压的频率和幅值。

3.2 工作过程仿真分析

    根据新型EPS五个工作过程的特点,简要阐述各个过程的控制方案。利用Matlab的Simulink强大的仿真能力,对各个工作过程进行仿真,给出PWM整流器直流侧与交流侧的电压/电流仿真波形图,并进行简单分析。

3.2.1 恒压充电与浮充仿真分析

    恒压充电与浮充的控制系统采用双环结构,即电流内环和电压外环,电压外环采用PI凋节,使蓄电池的端电压跟踪给定电压值。内环采用P调节,进行电流正弦波和高功率因数控制。

    蓄电池在充电过程中,对电网来说,蓄电池是一个负载,高功率闪数控制时,PWM整流器网侧电流跟踪电压信号。从图3和图4中可以看出,蓄电池充电初期,电流幅值较大,当t=0.1 s时。电流幅值减少,蓄电池端电压达到稳态值;当蓄电池由恒压充电到浮充电(电压稍降)时,蓄电池有短暂的放电过程,即t=0.25 s处电流与电压反相;蓄电池进入浮充状态后,充电电流明显降低。

3.2.2 恒流充电与有源逆变仿真分析

    恒流充电与有源逆变的控制系统也是由双环结构,内环是电流环(交流),采用P调节,达到交流侧的电流为正弦波和高功率因数,而外环仍然是电流环(直流),采用PI调节,控制直流侧的电流跟踪给定信号,实现恒流充电或者有源逆变功能。

    图5和图6是40 A的恒流充电到40 A的有源逆变仿真的电压/电流波形。在恒流充电过程,交流侧电压与电流同相,蓄电池吸收电网能量;在有源逆变过程,交流侧电压与电流反相,蓄电池给电网供电,放电电流基本恒定,可以进行蓄电池容量测量。

3.2.3 无源逆变仿真分析

    无源逆变即蓄电池给负载供电的过程。跟其他一般逆变控制方法相同,控制输出电压的频率与幅值不变。从图7可以看出,当t=0.2 s时,并联一个电阻,模拟负载的扰动,逆变电压的波形基本不变,可见逆变电源有一定的带负载能力,鲁棒性较好。

4 结 语

    根据PWM整流器的优点所设计的新型EPS应急电源实现了蓄电池管理的自动化和数字化。对提高后备电源系统的安全运行、可靠性和延长蓄电池的使用寿命也有着十分重要的意义。通过对新型EPS应急电源的各个工作过程的分析和仿真,对新型EPS具有更加全面、更加深入的认识,是进一步研究和设计的基础,在深入研究中发挥重要作用。

关键字:EPS  PWM整流器  充电  放电  Matlab 编辑:金海 引用地址:新型EPS电源工作过程及仿真研究

上一篇:经初级端进行精准控制的高效率充电器电源
下一篇:套管井测井仪电源的实现

推荐阅读最新更新时间:2023-10-18 14:52

中国应加强动力电池开发并完善交流充电标准
  在6月26~27日深圳举行的第三届(2012)国际新能源汽车高峰论坛上,北汽福田汽车工程研究院副总工程师李峰分析了动力电池厂商开发时存在的普遍问题:   ①对整车系统及运行工况缺乏了解;②只把动力电池作为孤立的零部件开发;③很少考虑与整车系统之间的相互影响,导致了系统层级的问题;④系统安全设计不足,缺乏FEMA分析,ASIL等级过低。 提高动力电池BMS软件能力   对于市场现有动力电池系统存在的问题,他认为,大部分动力电池厂商的BMS软件能力需要在以下4个方面提高:   1.BMS软件开发模型采用传统的C代码,没有采用基于模型开发的V模式。由于大量时间用于手工编写代码,在项目时间有限的情况下,导致算法开发、验证测试的
[汽车电子]
自制维修、充电两用稳压电源电路
对于广大的家电维修人员来说,维修电源是必不可少的,但是一台专业的维修电源是相当贵的.如对该电源进行适当改进,可制作一台物美价好的使用方便的,可供维修,充电两用的稳压电源.
[电源管理]
自制维修、<font color='red'>充电</font>两用稳压电源电路
一种基于MSP430的可充电脑起搏器的设计
摘要:脑起搏器是目前治疗帕金森病的理想方法,但是目前只有美国Medtronic公司研制并生产脑起搏器,其价格非常昂贵,电池只能用几年,而且电池用完之后还需要通过手术更换内部刺激器。提出一种基于MSP430的可充电脑起搏器的设计方案,通过经皮充电方式解决了电池耗尽问题,具有广阔的应用前景。 关键词:帕金森 脑起搏器 MSP430 经皮充电 无线通信 在运动障碍性疾病(Movement Disorders)中,帕金森病(Parkinson Disease,PD)以肌张力增高、运动减少为主要临床特征,因首先由英国人帕金木(Janes Parkinson)于1817年描述而得名。据不完全统计,目前我国约为120~130万帕金森病患者,
[单片机]
经初级端进行精准控制的高效率充电器电源
  初级端调节控制器(Primary Side Regulation, PSR)不需要次级端的反馈线路便可在初级端精准地控制充电器输出的CV/CC,实现省电、高效率和低成本的电源。这种 PSR 不仅包含了跳频 机制来降低 EMI,更包括了省电模式降低待机时的电源消耗。   图1为采用初级端调节控制的反激式转换器设计范例。PSR 控制器为了获得次级端输出电压的信息,采用独特的方式侦测变压器辅助绕组上的波形,以获得次级端的输出信息进行反馈控制。图2所示为主要的工作波形。 图1,  采用PSR控制的返驰式转换器电路图 图 2, 控制器的输出波形   对于采用 PSR 控制器的反激式 (flyback) 转换器工作
[电源管理]
电场耦合式无线供电系统:实现轻松无线充电
  村田制作所开发出了基于“电场耦合方式”的 无线 供电系统。电场耦合方式的无线供电技术与“电磁感应方式”及“磁场共振方式”不同,通过对置送电侧电极与受电侧电极,利用两电极间产生的感应电场来供电,具有抗水平错位能力较强的特点。村田制作所已试制完成了为平板终端、 电子书 终端等 便携 终端进行无线供电的供电台。在本文中,村田制作所的新业务负责人和商品策划人员将对该公司的战略和技术详情进行介绍。   在众多企业对无线传输电力的无线供电技术展开研发的背景下,村田制作所将着眼点放在了被称为“电场耦合方式”的技术上。以前村田制作所也开发过“电磁感应方式”的无线供电技术,但2008年前后决定改为推进电场耦合方式。   电场
[安防电子]
电场耦合式无线供电系统:实现轻松无线<font color='red'>充电</font>!
WattUp芯片样本开始出货 RF无线充电进军消费电子
自Energous在2017年底宣布,该公司的Energous Mid Field WattUp传输器参考设计已取得联邦通讯委员会(FCC)认证后,负责供应相关芯片的戴乐格半导体(Dialog)于日前宣布, WattUp芯片的样本已经开始出货,可望应用在智能型手机、穿戴式装置、听戴式(Hearable)装置等消费性可携式电子和物联网(IoT)装置。 这也意味着远距无线充电即将走出实验室,进入商品化。 FCC于2017年底所授予WattUp的认证,是该委员会首度授予FCC Part 18规范认证给采用远距无线充电的装置。 Dialog企业开发与策略资深副总裁Mark Tyndall表示,FCC认证进一步巩固了Dialog身为Ener
[半导体设计/制造]
正弦波电流供电的介质阻挡放电电路分析
1 引 言      介质阻挡放电电路是一种非线性容性负载 ,在设计其供电电源时,考虑到容性负载的特殊性,为提高电源的效率,在负载回路中串接了串联补偿电感,使其与负载构成串联谐振回路。随着电力电子技术的迅猛发展以及介质阻挡放电条件的要求,目前大多介质阻挡放电电源采用由电力电子器件构成的中高频逆变电源。由于采用了负载谐振型逆变电路,使得电路工作在谐振频率附近时负载电流接近于正弦波。因此为了设计出性能优良的串联谐振式介质阻挡放电电路供电电源,很有必要清楚电路的工作原理、正弦电流供电时介质阻挡放电电路的特殊性。本文正是从这一思想出发,利用介质阻挡放电电路的等效电路分析了由正弦波电流供电的介质阻挡放电电路的工作原理,推导出了间隙放电电压和
[电源管理]
正弦波电流供电的介质阻挡<font color='red'>放电</font>电路分析
现代、起亚将在北美采用特斯拉充电标准
据路透社报道,10月5日,现代汽车和起亚汽车宣布已决定在美国采用特斯拉的电动汽车充电技术。 图片来源:现代汽车 两家公司表示,现代汽车和起亚汽车的新电动汽车将从2024年第四季度开始在美国配备特斯拉的北美充电标准(NACS)端口。但是,在加拿大,配备NACS端口的现代电动汽车将于2025年上半年上市,而配备NACS端口的起亚电动汽车将于2024年底上市。 现代汽车和起亚汽车表示,此举使拥有NACS端口的现代和起亚电动汽车可以使用美国、加拿大和墨西哥的12,000多个特斯拉超级充电桩。 此外,两家公司还将为现有和未来的电动汽车车主提供适配器,可以从2025年第一季度开始使用特斯拉的超级充电网络。今年6月,现代汽
[汽车电子]
现代、起亚将在北美采用特斯拉<font color='red'>充电</font>标准
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved