1引言
交流稳压电源作为交流供电系统中的重要环节,得到了越来越广泛的应用。它不仅能稳定电压,改善供电质量,同时还具备对负载进行有效保护、延长设备使用寿命、协助使用者对供电进行管理的功能。但是,稳压电源自身的损耗问题,也引起了人们的重视。如何把稳压与节能结合起来,是电源工作者的一个重要研究课题。
2交流稳压电源的损耗分析
交流稳压电源作为配电设备,在工作过程中存在自身的损耗问题。由于不同的稳压原理和不同厂家稳压电源的不同品质,这种损耗相差很大,其中自耦调压型稳压电源的损耗相对是较小的。现就自耦调压型稳压电源在实际工作中的损耗问题进行初步分析。
在众多安装了稳压电源的场所,稳压电源往往被作为局部负载的供电设备,使其24小时处于工作状态。但是,大多数负载每天平均工作时间约为5h~8h,其余的16h~19h稳压电源处于空载状态,于是电源存在长时间的空载损耗。另一方面,稳压电源带负载工作的过程中,随着电网总负载量大小的变化,电网电压在不同时段也会有高低不同,必然有一段时间电网电压满足设备用电要求(一般为220V±10%),而这时稳压电源仍然在工作中,这也是一种不必要的损耗,造成能源浪费。这种情况在不同地区不同时段的反映不同,假设在负载工作的5h~8h中有一半时间电网电压是符合负载额定工作电压要求的。根据这一假设,结合机械工业标准ZBK42002—87接触式自动调压器额定性能数据,对自耦稳压器的损耗进行估算,如表1、表2所示。
表1自耦稳压器的损耗估算(负载每天工作5h)
损耗
表2 自耦稳压器的损耗估算(负载每天工作8小时)
损耗
功率表中“多余损耗”栏为负载工作而市电基本正常时的电能损耗和空载损耗之和,“所占比例”栏为多余损耗占全部损耗的百分比,“全年耗电”栏为不必要的多余损耗一年内所耗电能。从表中可以看出,在各种功率自耦稳压电源的损耗中,不必要的“多余损耗”占全部能耗的64%以上,而全年多余的电损耗却在几百至上千(kW·h),由此看出这种不必要的电力损耗是相当大的。以上还是效率较高的自耦调压稳压电源的电能损耗估算,对于其他效率较低的稳压电源,其损耗则是以上数据的几倍到十几倍,电能的浪费更是相当惊人。因此,如何减少“多余损耗”是交流稳压电源节能的关键,为此,有必要对现行的稳压电源进行性能评估与改进,以便在稳压过程中尽量减少电能的损耗,以达到节约资源与环境保护的目的。
3关于交流稳压电源节能的研究
交流稳压电源以其稳压和有效保护用电设备等特性而得到用户的青睐,如果在负载不工作和市电正常供电的情况下,稳压电源能自动进入“休眠”状态节约电能,则成为真正的节能型交流稳压电源。
3.1交流稳压电源的节能原理
根据以上构思,对自耦调压型稳压电源而言,其稳压与节能工作原理如图1所示。
图1 交流稳压电源节能原理图
图中实线部分为通常的自耦调压型稳压电源原理框图,虚线部分是为达到节能目的而增加的控制电路。在框图中虚线部分的作用下,当负载不工作或负载工作而市电正常供电时,稳压电源均处于“休眠”节能工作状态,这时调压稳压主通道几乎不耗电,从而达到节能和环保的目的。
3.2交流稳压电源节能典型电路分析
由以上交流稳压电源节能原理分析可知,要想达到节能的目的,最容易想到也是最容易实现的是在稳压电源中加入直通旁路通道,如图2所示,当稳压电源在负载不工作或市电正常时,节能控制电路断开S1和S2,接通S3,切换到市电直通状态,使稳压主电路不耗电,而当负载工作且电网电压不正常时(例如大于242V或小于198V),则S3断开,S1和S2接通,进入稳压工作状态,这种方法几乎适用于所有的稳压电源。但它有两个明显的缺点:
(1)在市电直通与稳压转换过程中,存在瞬间断电现象;
(2)当负载功率较大时,用于转换的S1、S2和S3要求采用大电流的通断器(如交流接触器等),增大了整机成本。
图2 旁通电路图
为了克服以上方案的不足,对于自耦调压型稳压电源,有一个更好的解决方案,如图3所示。当需要稳压工作时,S接通,电路进入正常的调压稳压状态;当负载不工作或市电正常时,控制电路控制炭刷A移动到固定点B位置,然后断开S,市电在B-A点直通供电,此时自耦调压器不耗电能,即可以达到节能的目的。由于空载和负载时流经S的电流远小于整机额定电流,因此S可用很小电流的通断器,并且直通和稳压转换时不会出现瞬间断电,是一种较理想的实现方式。
图3 自耦调压型改进方案
3.3应用
中山大学电器设备厂根据多年来生产稳压电源的经验,按照以上节能原理,已经研制了“空损耗”的节能型稳压电源产品。把普通的稳压电源更换成节能型稳压电源后,节能都在65%以上,效果非常显著。相信经过进一步的完善和推广应用,将会取得良好的社会效益和经济效益,为我国的节能与环保事业作出贡献。
上一篇:小容量UPS的电源过电压防护方案
下一篇:开关电源EMI整改频段干扰原因及抑制办法
推荐阅读最新更新时间:2023-10-18 15:14
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- CGD和Qorvo将共同革新电机控制解决方案
- 是德科技 FieldFox 手持式分析仪配合 VDI 扩频模块,实现毫米波分析功能
- 贸泽开售可精确测量CO2水平的 英飞凌PASCO2V15 XENSIV PAS CO2 5V传感器
- 玩法进阶,浩亭让您的PCB板端连接达到新高度!
- 长城汽车研发新篇章:固态电池技术引领未来
- 纳芯微提供全场景GaN驱动IC解决方案
- 解读华为固态电池新专利,2030 叫板宁德时代?
- 让纯电/插混车抓狂?中企推全球首款-40℃可放电增混电池,不怕冷
- 智驾域控知多少:中低端车型加速上车,行泊一体方案占主体
- Foresight推出六款先进立体传感器套件 彻底改变工业和汽车3D感知