摘 要:无论何种应用,工程师都会面对要用负电压对特定功能的电路进行偏置的问题,这种需要常见于单电源供电系统中要高性能地析取或强加一个模拟信号。当然,用交流电源供电的任何系统都可以用交流/直流转换器的附加绕组来解决这一问题。但是,当采用单个电池供电时,情况就较为复杂。在这种情况下,采用简单的直流/直流转换器即可满足这种需要,而无须增大PCB占位面积或增加成本。
基本电路说明
双电压转换器基于NCP5006芯片,该芯片的高电压输出能力,原先被用来供电给白色LED。该转换器用于我们实验室中对专用模拟芯片进行性能鉴定的高精度ADC系统,为了使运算放大器获得最佳性能,需要采用一个双电源电压。另一方面,还需要一个+10V电压用于对额外的电流源进行适当的偏置,以产生线性电压斜率。因为板上没有这几种电压(由3.6V锂离子电池供电),因此采用标准元件设计出如图1原理图所示的电路。
一般而言,转换器可以将输入电压提升至20V,并且能够向负载提供高至600mW的功率。输出电压由连接于Vout和地之间的R1/R2网络所提供的反馈来稳定。芯片设计中包含200mV 反馈检测,从而减小了总的损耗。
+10V输出电压由二极管D2整流,最好选用肖特基器件,但是硅类器件亦可,因为我们只需满足低输出电流要求,储能电容为2.2μF(最好是陶瓷电容)。输出电容取决于输出负载电流,如果负载电流较大且要求较小纹波,则可以增大此电容。该电路设计为向+Vout提供5mA电流。-10V由类似电荷泵的技术产生,使用一个100nF 陶瓷电容由开关电压向负载提供能量。采用微型SOT563封装的双二极管,可使PCB布局简洁且占位面积有限。当然,必须使用一个额外的2.2μF储能电容(最好是陶瓷电容)来适当滤除负极输出上的噪声。负极输出能够向负载提供-5mA电流,但是如果相应调整C2和C3的大小,则可以支持更大的负载。
尽管负极输出电压随着负载而变化,但这并不是主要问题,因为本应用中采用了高端运算放大器,有利于提高电源抑制比(PSRR),避免了任何因负极电压变化而产生的问题。另一方面,本应用所吸收的电流几乎恒定,形成一个输出几乎恒定的负电压。 输出电压纹波主要来自由开关引起的快速瞬变所产生的噪声: 参见图2中的波形。尽管这种噪声是有害的(参见安森美半导体应用注释AND8172D),但可以采用额外的LC滤波器串连输出电压,以降低噪声。
微型的高磁导率电感配合现有的电容使用(参见图3),可以显著减小噪声,如图4所示。当然,PCB必须经过仔细设计,以减小采集噪声,并且根据不同的敏感度水平,可能强制使用多层板将噪声减至最小。
输出稳压
根据应用的不同,稳定而精确的输出电压可能是一项强制性要求;但上面给出的简单电路因为输出电压取决于负载,无法满足这项要求。正电压输出是稳压的,并通过表面贴装的LM317B线性稳压器进行过载保护。两个附加的二极管用以在电源开通/关闭的瞬变过程中,为稳压的LM317B提供保护
尽管市场上存在一批负电压线性稳压器,但是选择分立解决方案可以更好地支持较小的负载电流。另一方面,这里无需过载保护电路,因为负压输出电流由直流/直流架构自动限制。事实上,如果-10V 和地之间发生对地短路,则PNP晶体管中不可能流过连续电流(电容C3阻隔了直流电流)。因此,对该PNP器件不存在连续正向偏置安全工作区域问题,而小信号BC858C器件可以很好地实现这一功能。图6所示的PSPICE仿真结果说明了每个输出端带10mA负载的线性稳压器的性能。
关键字:电压转换器
编辑:冰封 引用地址:双输出电压转换器低成本解决方案
推荐阅读最新更新时间:2023-10-18 15:16
采用超低电压转换器改善从热电能源的能量收集
背景 测量和控制所需的超低功率无线传感器节点的激增,再加上新型能量收集技术的运用,使得由局部环境能量而非电池供电的全自主型系统成为可能。利用环境或“免费”能量来为无线传感器节点供电是很有吸引力,因为它能够对电池或导线供电提供补充、甚至完全无需使用电池或供电导线。当更换或检修电池存在不便、费用昂贵或危险之时,这显然是有好处的。 许多无线传感器系统消耗非常低的平均功率,从而成为可利用能量收集技术进行供电的主要候选对象。很多传感器节点用于监视缓慢变化的物理量。所以可以不经常进行测量,也不需要经常发送测量数据,因此传感器节点是以非常低的占空比工作的。相应地,平均功率需求也很低。例如:如果一个传感器系统处于唤醒状态时需要3.3V/
[电源管理]
Buck三电平转换器输出电压与输出电流的关系
输出电压增益与输出电流关系曲线,描述了转换器的供电能力,称为外性曲线,它与占空比和电感电流是否连续有关。
1)电感电流连续
从式(3-257)和式(3-260)可知,无论是三电平或两电平电流连续时都有
2)电感电流断续
临界状态电流IC的值为
下面对三电平和两电平情况分别进行分析。
三电平临界状态电流IC,与占空比有关,可以表示为
代人上式,因此有
式(3-261)表明,当Buck电路在三电平工作时,iLf>Ic-3L时为连续状态,否则为断续状态。断续时的工作波形如图1所示。
图1 Buck三电平工作电感电流不连续波形图
图中△iON、
[电源管理]
应用于海水淡化之电压双象限升降压转换器
绪论 现今大部分地区,由于工商业的发展及民生需求的增加,水资源的缺乏已成为了不容忽视的潜在威胁。自1950年代起,各式各样的海水淡化方式陆续被发明且改良,而近年来一项新的海水淡化方式---电容去离子化法被提出,其为利用特殊表面构造的电容吸附海水中不同的正负离子,以达成海水淡化之目的 ,这样的方式不仅在海水淡化中有很大的使用空间,更可以扩及到废污水的处理应用。由于电容去离子化法是藉由电容淡化模块上所储存的电荷吸引海水中相反极性的粒子,故传统上应用于此的节能电路是透过将每一级淡化完成之电容上的电荷以升降压转换器转至下一级电容来达成节能的目的。完整应用电容去离子化法之海水淡化系统示意图如图1所示 ,其运作过程有两个主要部分,第一
[电源管理]
Microchip发布灵活的集成式数字增强型电源模拟控制器
Microchip Technology Inc.(美国微芯科技公司)日前推出了用于DC-DC电源转换的全新数字增强型电源模拟(DEPA)降压控制器。该器件比目前市场上的任何其他模拟控制架构都要灵活。这一单芯片解决方案控制DC-DC转换器,能够接受高压输入(高达42V),同时输出电压可在较宽范围内实现稳压(0.3V至16V,无需任何外部元器件或者驱动器)。 MCP19122/3中的内部PIC®单片机能够动态调整工作频率、过压和欠压锁定阈值、电流限值、软启动、电压或者电流输出设定值以及最大占空比。如此高级别的可配置特性具有很多应用优势。例如,MCP19123能动态调整输出电压以满足USB供电要求,同时还可调整输出过压锁定值,以维
[电源管理]
采用超低电压转换器改善从热电能源的能量收集
背景 测量和控制所需的超低功率无线传感器节点的激增,再加上新型能量收集技术的运用,使得由局部环境能量而非电池供电的全自主型系统成为可能。利用环境或“免费”能量来为无线传感器节点供电是很有吸引力,因为它能够对电池或导线供电提供补充、甚至完全无需使用电池或供电导线。当更换或检修电池存在不便、费用昂贵或危险之时,这显然是有好处的。 许多无线传感器系统消耗非常低的平均功率,从而成为可利用能量收集技术进行供电的主要候选对象。很多传感器节点用于监视缓慢变化的物理量。所以可以不经常进行测量,也不需要经常发送测量数据,因此传感器节点是以非常低的占空比工作的。相应地,平均功率需求也很低。例如:如果一个传感器系统处于唤醒状态时需要3.3
[电源管理]
双输出电压转换器低成本解决方案
摘 要:无论何种应用,工程师都会面对要用负电压对特定功能的电路进行偏置的问题,这种需要常见于单电源供电系统中要高性能地析取或强加一个模拟信号。当然,用交流电源供电的任何系统都可以用交流/直流转换器的附加绕组来解决这一问题。但是,当采用单个电池供电时,情况就较为复杂。在这种情况下,采用简单的直流/直流转换器即可满足这种需要,而无须增大PCB占位面积或增加成本。
基本电路说明
双电压转换器基于NCP5006芯片,该芯片的高电压输出能力,原先被用来供电给白色LED。该转换器用于我们实验室中对专用模拟芯片进行性能鉴定的高精度ADC系统,为了使运算放大器获得最佳性能,需要采用一个双电源电压。另一方面,还需要一个+10V电压
[电源管理]
详解隔离式DC/DC转换器电压调节
隔离式DC/DC转换器是众多应用所必需的组件,这些应用包括了电能计量、PLC、IGBT驱动器电源、工业现场总线和工业自动化等。此类转换器常用于提供电流隔离、改善安全性及提高抗噪声能力。而且,它们还可用来生成包括双极性电源轨在内的多个输出电压轨。
按照输出电压调节准确度,隔离式DC/DC转换器常常分为三类,即:已调节型、未调节型和半调节型。本文将讨论各种不同的调节方案和对应的拓扑。对影响调节准确度的因素进行了详细地检查。这将形成一些可在实际设计中改善调节准确度的设计小贴士。此外,还阐述了每种方案的优缺点,旨在为选择针对某种特定应用需求的合适解决方案提供指导。
隔离式DC/DC转换器的反馈与控制
隔离式DC/DC转换
[电源管理]
串行接口电压输出型DA转换器的控制
//-----------------------函数声明--------------------------------------------------------
#include reg51.h
#include intrins.h
//-----------------------管脚声明--------------------------------------------------------
sbit CS_max532=P1^0;
sbit CLK_max532=P1^1;
sbit DI_max532=P1^2;
sbit DO_max532=P1^3;
sbit LDAC=P
[单片机]