LVDS技术在某成像光电跟踪产品中的应用

最新更新时间:2011-08-09来源: 21IC关键字:差分信号  差分阻抗  共模噪声 手机看文章 扫描二维码
随时随地手机看文章
  在当今电子设计领域,由集成电路芯片构成的电子系统朝着大规模、小体积、低电压、高速度的方向飞速发展,导致电路的布局和布线密度变大,同时信号的频率仍在不断提高。采用降低电压的办法不仅可以减少高密度集成电路的功率消耗和芯片内部的散热,有助于提高集成度,而且可以提高信号频率、降低信号间的串扰,是集成电路发展的一个方向。而采用LVDS(Low Voltage Differential Signaling)传输则可以有效克服共模噪声,可用于远距离高速信号传输。

  1 LVDS技术简介

  LVDS(Low Voltage Differential Signaling)是一种低摆幅的差分信号技术,它使得信号能在差分PCB线对或平衡电缆上以几百Mb/s的速率传输,其低压幅和低电流驱动输出实现了低噪声和低功耗。LVDS在两个标准中被定义:IEEE P159613(1996年3月通过),主要面向SCI(Scalable Coherent Inteface),定义了LVDS的电特性,还定义了SCI协议中包交换时的编码;ANSI/TIA/EIA-644(1995年11月通过),主要定义了LVDS的电特性,并建议了655 Mb/s最大速率和11 923 Gb/s的无失真通道上的理论极限速率。在两个标准中都指定了与物理通道无关的特性,这保证了LVDS能成为多用途的接口标准。

  图1给出了典型的LVDS互连方法。这里使用的是DS90C031 LVDS驱动器芯片和DS90C032LVDS接收器芯片,其中DATA INPOUT和DATA OUTPOUT是TTL电平。驱动器和接收器主要完成TTL信号和LVDS信号之间的转换。LVDS驱动器由一个驱动差分线对的电流源组成,通常电流为3mA。LVD8接收器具有很高的输入阻抗,因此驱动器输出的电流大部分都流过100Ω的匹配电阻,并在接收器的输入端产生大约300 mA的电压。当驱动器翻转时,它改变流经电阻的电流方向,接收器产生有效的逻辑“1”和逻辑“0”状态。

  应用LVDS具有许多优势:

  (1)高速率。由于LVDS逻辑状态间的电压变化仅为300 mV,因而能非常快地改变状态。例如当信号电平在333 ps内变化300 mV时,压摆率仅0.9 V/ns,低于将信号失真和串扰减到最小时的标准压摆率1 V/ns。如果使用上升和下降时间不大于比特宽度2/3的老标准,那么具有333 ps跃变的信号能在1 Gb/s下工作,仍保有很大的余地。

  (2)低功耗。随着工作频率的增加,LVDS的电源电流仍保持平坦,而CMOS和GTL技术的电源电流则会随频率增加而呈指数上升,这得益于使用恒流线路驱动器。电流源把输出电流限制到约3.5 mA,同时也限制跳变期间产生的任何尖峰电流。由于没有尖峰电流,就有可能获得1.5 Gb/s的高数据率而不明显增加功耗。恒流驱动输出还能容忍传输线的短路或接地,而不会产生热问题。LVDS降低了终端电阻压降,因此还降低了电路的总功耗。

  (3)噪声性能好。LVDS产生的电磁干扰低,这是因为低电压摆幅、低边沿速率、奇模式差分信号,以及恒流驱动器的Icc尖峰只产生很低的辐射。传输通路上的高频信号跳变产生辐射电磁场,场强正比于信号携带的能量,通过减小电压摆幅和电流能量,LVDS把该场强减到最小;差分驱动器引入了奇模式传输,在传输线上流过大小相等、极性相反的电流,电流在该线对内返回,面积很小的电流回路产生最低的电磁干扰;当差分传输线紧耦合时,串入的信号是作为共模电压出现在接收器输入的共模噪声中,差分接收器只响应正负输入之差,因此当噪声同时出现在2个输入中时,差分信号的幅度并不受影响。共模噪声抑制也同样适用于其他噪声源,比如电源波动,衬底噪声和接地回跳等。

  (4)具有故障安全(fail-safe)特性确保可靠性。LVDS驱动器和接收器还能实现热插拔,因为恒流驱动解决了损坏问题。另一特点是接收器的故障保护功能,它能防止在输入引脚悬空时产生输出振荡。除上述各种优点外,LVDS只需要简单的端接电阻。这些电阻可以集成到芯片之中,与每条传输线配备多个电阻和电容元件相比,大大降低了所需的费用。另外,LVDS能容忍传输线通路微小的阻抗失配,只要差分信号在紧耦合的传输通路中通过平衡不连续处,信号仍能保持其完整性。非阻抗受控连接器、电路板过孔和芯片封装对差分信号的影响要比对单端信号的影响小得多。表1给出了RS 422与LVDS之间的简单比较,LVDS的优势是显而易见的。

  2 LVDS在某成像光电跟踪产品中的应用

  2.1 系统应用简介

  某成像光电跟踪产品信息处理平台采用FPGA+DSP的设计框架,结构框图如图2所示。

  该信息处理平台在FPGA和DSP外围增加调理电路、A/D装换器、PROM、SBSRAM、DPRAM、FLASH、电源及电源滤波电路等。FPGA+DSP架构最大的特点是结构灵活,适于模块化设计,能有效地提高算法效率,因而非常适用于成像系统的信息处理。从图2可以看出,该系统通过FPGA,利用LVDS标准电路设计完成图像数据的输出。在该系统中,LVDS有三路差分输出,其中两路传送数据(DA,DB),一路传送时钟(C)。传送格式的要求如下:DA(DAX)为发送16位数据线,传送系统给图像采集设备的所有数据。包括每帧开头发送一个帧计数,帧正程发送图像数据(实时图像数据、滤波图像数据及二值像数据,按DSP要求传送)。图像数据为12位或14位,按需要传送。16位数据的分配如下:最高位为奇偶校验位,“1”表示奇数,“0”表示偶数;次高位为正逆扫信号,“1”表示正扫,“0”表示逆扫;在每帧的开头,图像数据输出之前,添加2个验证字——FDB18540,作为接收方判断每帧数据传送的起始点;帧正程开始后,传图像数据14位,如传的是12位图像数,则其14,13位填0,后12位为图像数据。

  DB(DBX):发送同步信号,每字同步,与首数据最高位同时发出,宽度为半个时钟C(CX):时钟信号,始终保持。在LVDS设计实现过程中参考XAPP233的设计方法,16位数据通过并转串移位寄存器进行移位处理,将偶数位锁存于传送时钟的上升沿,奇数位锁存于传送时钟的下降沿。其输入/输出采用DDR技术,保证双沿触发。移位寄存器时钟示意图如图3所示。最终输出数据的时钟锁存的位置如图4所示。LVDS电路功能框图如图5所示。

  2.2 系统中LVDS设计的要点

  该系统中LVDS应用于FPGA+DSP的高速数字处理平台,在设计及调试过程中,曾出现由于终端电阻匹配不当带来的噪声较大的问题、由于通道选择不当带来的信号畸变问题、以及印制板布线不当带来的信号串扰及噪声等问题,通过这些实际问题的解决总结了以下几点。

  2.2.1 终端电阻

  不管使用的LVDS传输通道是PCB线对还是电缆,LVDS要求使用一个与通道相匹配的终端电阻(100±20)Ω,以防止信号在通道终端发生反射,同时减少电磁干扰。该电阻终止了环流信号,应该将它尽可能靠近接收器输入端放置。该系统使用了两个阻值各为50 Ω的电阻串联,并在中间连接点通过一个电容接地,很好地滤去了共模噪声。

  2.2.2 通道(电缆和连接器)选择

  使用受控阻抗通道,差分阻抗约为100 Ω,不会引入较大的阻抗不连续性;当电缆长度小于0.15 m时,大部分电缆都能有效工作,当电缆长度在0.15~10 m之间时,CAT3(Categor 3)双绞线对电缆效果好(本系统采用该设计),当电缆长度于10 m,并且要求高速率传输时,建议使用CAT5双绞线对。

  2.2.3 印制板设计

  尽量使用多层板设计(该系统最终采用8层PCB板),保证LVDS信号、地、电源、TTL信号分处于不同的PCB层,或者至少处于不同的分区;使TTL信号和LVDS信号相互隔离,最好将TTL和LVDS信号放在电源/地层隔离的不同层上;使LVDS驱动器和接收器与LVDS端间连接尽可能短。电源层和地层应尽可能使用粗线。

  2.2.4 板上导线

  微波传输线(microst rip)和带状线(stipline)都有具备良好的性能;前者一般具备更高的差分阻抗,不需要额外的过孔,后者则在信号间提供了更好的屏蔽。

  2.2.5 差分线对

  差分线对使用与传输媒质的差分阻抗和终端电阻相匹配的受控阻抗线,并且使差分线对离开集成芯片后立刻尽可能地相互靠近(距离小于10 mm),这样能减少反射并能确保耦合到的噪声为共模噪声。使差分线对的长度相互匹配以减少信号扭曲,防止引起信号间的相位差。而且2条差分线之间应尽可能保持平行,以避免差分阻抗的不连续性。不要仅依赖自动布线功能,而应仔细修改以实现差分阻抗匹配并实现差分线的隔离。尽量减少过孔和使用90°折线来改变线迹走向,避免其他引起线路不连续性的因素。

  2.2.6 抗噪声设计

  如果电缆感应到的噪声超过LVDS接收器内部线路设计的容限,接收器就会不确定地开关或振荡。在本系统中通过外加电阻来提高噪声容限,如图6所示。图6中R1,R3是可选的外接电阻,用来提高噪声容限,R1,R3取12 kΩ,R2取100Ω。

  3 结语

  该系统经过内场的高低温、振动、电磁兼容等试验,同时经过外场绕飞、系留及靶试。内外场试验表明,某成像光电跟踪产品利用LVDS稳定可靠地进行了图像数据的传输及测试,解决了高速率、大容量、长距离的图像数据传输问题,并具备良好的电磁兼容性。另外,该项技术不仅在某成像光电跟踪产品中得到可靠验证,目前还被推广应用到其他数据传输系统中。

关键字:差分信号  差分阻抗  共模噪声 编辑:探路者 引用地址:LVDS技术在某成像光电跟踪产品中的应用

上一篇:给水变频控制系统在100MW机组中的应用
下一篇:基于LD7552B的绿色开关电源设计与分析

推荐阅读最新更新时间:2023-10-18 15:33

示波器的差分信号测量
示波器的差分信号测量 初步介绍差分测量、放大器类型、应用及怎样避免常见错误 当存在500 mVp-p、60 Hz 的共模噪声时,使用传统示波器探头不能测量模拟的4 mVp-p心跳波形(上图)。差分放大器则可以从噪声中提取信号。 引论 所有测量都是两点测量 人们一直在一条电路的两点之间测量电压,不管是使用电压表还是使用示波器。当示波器探头接触电路中的一点时,即使没有连接地线,通常也会在显示器上出现波形。在这种情况下,测量的参考点是经过示波器机箱的安全接地通往电路中的电气地。 数字电压表通过两个探头测量两点之间的电位。由于这两个探头是彼此隔离的,因此这两点可以位于电路中任何地方。但情况并不总是如此。在数
[模拟电子]
示波器的<font color='red'>差分信号</font>测量
监视差分信号的有效和故障条件
  知道差分信号总线上是否有有效信号是很有用的。本例是检测差分数据传输,并向微控制器或其它监视器件报告信号丢失(LOS)信息。   图1所示电路用于检测最小幅度差为200mV、绝对值从-7V至+12V的连续差分信号。该电路可以检测输入开路、输入短路和输入保持在高或低电平的情况。当其中任何一种情况发生时,电路的输出为低电平,而有差分脉冲串时则为高电平。该电路只需单5V电源供电。   图1 连续差分信号检测电路   OPEN 开路   SHORTED 短路   ONE STUCK HIGH ONE STUCK LOW 一端保持高电平,另一端保持低电平   DIFFERENTIAL SIGNAL TRA
[嵌入式]
高压差分探头有良好的共模噪声抑制能力
高压差分探头是针对高压差分信号的测量,满足浮地测量的需求。其带宽达到50MHz,满足了大部分测试系统的需要;丰富的量程可供选择,其差动测量电压范围满足大部分测试电路的要求;电子轻触式按键,使得使用寿命更长;具有5MHz带宽限制功能选择,5MHz频率带宽满足大部分开关电源中FETs的开关频率的测量,并可以滤除更高频率的噪声和干扰;带有声光报警功能,且可手动关闭声音报警功能,更具有人性化设计;高压差分探头配备标准的BNC输出接口,可与任何厂家的示波器配合使用,测量被测电路波形。高压差分探头具备良好的共模噪声抑制能力,输入端具有较高的输入阻抗和较低电容,可以准确高速地测量差分电压信号。可广泛用于开关电源﹑变频器﹑电子镇流器﹑变频家电和其
[测试测量]
消除汽车和工业环境中的视频共模噪声
图1,具DC 调节的噪声抑制感测放大器。   图 1中显示的电路能有效地去除在汽车和工业应用中视频信号的背景噪声(图3)。这种特殊的设计可消除超过1000倍的共模噪声, 比起其它基于运算放大器的拓扑简单得多。 该设计采用一个高CMRR差分放大器,只需两个电阻器就可设置差分增益(此例中的增益为2)。对于实现单位增益,无需另外添加元器件。单电源操作通常需要输出偏移控制,以使信号不被削波。U1(LT6552)的双输入结构可以轻松做到这一点(参见图1中的VDCADJ)。 图2,组合的双绞线视频线路接收器、电缆均衡器和显示器驱动器。   这种电路的一个专门用途是通过双绞线电缆传递闭路电视(CCTV)信号,这替代了较传统的屏蔽
[手机便携]
pcb layout初学者如何理解差分信号
随着半导体技术和深压微米工艺的不断发展,IC的开关速度目前已经从几十M H z增加到几百M H z,甚至达到几GH z。在高速PCB设计中,工程师经常会碰到误触发、阻尼振荡、过冲、欠冲、串扰等信号完整性问题。本文将探讨它们的形成原因、计算方法以及如何采用Allegro中的IBIS仿真方法解决这些问题。1信号完整性定义信号完整性(Signal Integrity,简称SI)指的是信号线上的信号质量。信号完整性差不是由单一因素造成的,而是由板级设计中多种因素共同引起的。破坏信号完整性的原因包括反射、振铃、地弹、串扰等。随着信号工作频率的不断提高,信号完整性问题已经成为高速PCB工程师关注的焦点。2反射2.1反射的形成和计算传输线上的阻
[模拟电子]
基于FPGA+DSP的多通道单端/差分信号采集系统设计
在信号处理过程中,经常采用 DSP + FPGA 协同处理的方法。是因为DSP虽然可以实现较高速率的信号采集,但其指令更适于实现算法而不是逻辑控制,其外部接口的通用性较差。而FPGA时钟频率高、内部延时小,全部控制逻辑由硬件完成,速度快、效率高,适合于大数据量的传输控制,可以集成外围控制、译码和接口电路,在高速数据采集方面有着DSP以及单片机无法比拟的优势,但缺点是难以实现一些复杂的算法。因此,若采用DSP+FPGA协同处理的方法,便可以使DSP的高速处理能力与FPGA的高速、复杂的组合逻辑和时序逻辑控制能力相结合,达到互补,使系统发挥最佳性能。 在目前的信号采集及测试系统中,由于应用背景的复杂,经常需要对多路信号进行采集,有的甚
[嵌入式]
基于FPGA+DSP的多通道单端/<font color='red'>差分信号</font>采集系统设计
共模半导体推出超低噪声、超高PSRR线性稳压电源GM1205
『共模半导体』推出高性能低压差线性稳压电源GM1205,其采用的超低噪声和超高电源抑制比(PSRR)架构对噪声敏感的信号采集和无线通信应用供电。 GM1205被设计为一个高性能电流基准后跟随一个高性能电压缓冲器,其可容易地通过并联以进一步降低噪声、增加输出电流和改善PCB上的散热量。 GM1205系列产品介绍 GM1205 可在 180mV 典型压差电压条件下提供500mA,该产品正常工作静态电流的典型值为 3.1mA,并在停机模式中低于 1μA。该器件通过片外电阻调节输出电压,能够在宽输出电压范围(1V 至 15V)内保持单位增益工作,从而提供几乎恒定的输出噪声、PSRR、带宽和负载调整率,并且这些性能与输出电压无关。此
[电源管理]
<font color='red'>共模</font>半导体推出超低<font color='red'>噪声</font>、超高PSRR线性稳压电源GM1205
通信应用中差分电路设计的相关技术解析
以足够的保真度成功捕获信号是通信系统设计的一大难题。严格的标准规范会要求选择合适的接口拓扑结构。本期座谈介绍了差分设计技术的优势,以及其性能优势在当今高性能通信系统中如何影响严格的系统需求。此外,将回顾射频的定义,概要说明系统预算,并对比不同的实现方法。 通信应用中差分电路设计的相关技术有哪些呢?首先对单端和差分信号进行一下比较,然后简单介绍接收器的信号链和系统性能方面一些需要考虑的因素,然后就会发现差分应用的优势。从驱动ADC的角度与单端应用作比对,我们会发现差分应用会更容易实现较高的数据率。最后呢,我们将回到系统设计层面,总结差分应用的好处。 单端和差分信号 首先谈到单端和差分信号的概念,这个大家都比较了解了。
[模拟电子]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved