基于不同VTH值的新型CMOS电压基准

最新更新时间:2011-08-18来源: chinaaet关键字:温度系数  阈值电压  迁移率  电流源 手机看文章 扫描二维码
随时随地手机看文章

  基准电压源广泛应用于各种模拟集成电路、数/模混合信号集成电路和系统集成芯片(SoC)中,是集成电路的一个基本元件,其稳定性直接影响到整个系统的精度。然而,传统的高性能基准电路普遍采用带隙基准电路,与标准CMOS工艺不兼容。为了解决带隙基准电路与标准CMOS工艺不兼容问题,一些学者提出了一定的解决方法,例如:利用N阱的寄生二极管设计带隙基准,利用CMOS管的亚阈值区工作原理设计基准,利用载流子和阈值电压在不同温度下的特性设计基准等。但是他们的电源抑制比普遍偏低,且温度系数较大。

  本文利用高电源抑制比电路设计的和式偏置电流源进一步提高了电源抑制比,并利用NMOS和PMOS管的两个阈值电压VTHN和VTHP具有相同方向但不同数量的温度系数,设计了一种基于不同VTH值的新型CMOS基准。该设计充分利用CMOS器件高输入阻抗、低功耗的特点,利用相同电流减少了载流子迁移率对温度性能的影响,利用VRHN和VTHP温度系数抵消原理和高电源抑制比和式电流源,大大降低了基准的温度系数,提高了电源抑制特性,使电路的性能得到优化。

  1 传统带隙电路原理

  如图1所示,传统的带隙电路主要是利用双极型晶体管的基极-发射极电压VBE具有负温度系数,而两个不同电流密度的双极型晶体管之间的基极一发射极电压差△VBE具有正温度系数,将其乘以合适的系数K后,再与前者进行加权,即:VREF=VBEK△VBE,从而在一定范围内就可以抵消VBE的温度漂移效应,得到低温漂的输出电压VREF。K值将通过把VBE的表达式带入VREF中,在参考温度T0处令求得。

  但是使用BJT管会占用很大的芯片面积且与在标准CMOS工艺中不能很好的兼容。

  2 新型CMOS基准电路原理

  对于CMOS器件,其阈值电压VTH和载流子迁移率μ是主要的受温度因数影响的参量。虽然阈值电压VTH和载流子迁移率μ的值都随着温度的升高而减小,但是MOS器件阈值电压VTH和载流子迁移率μ的下降对于MOS管的漏电流ID有着完全相反的效果:阈值电压VTH越低,漏电流ID越大;而载流子迁移率μ越小,漏电流ID越小。

  由文献可知,阈值电压VTH与环境温度有着近似的线性关系:

  式中:aVT是阈值电压VTH的温度系数,其值介于1~4 mV/℃之间,对NMOS和PMOS是相互独立且不同的。

  载流子迁移率μ和环境温度的关系为:

  式中:μ(T0)是某基准温度时的载流子迁移率,且m介于1~2.5之间。

  由式(1)可知,VTHN和VTHP具有不同的负温度系数,只要取合适的系数K时:

  就可以得到不随温度变化的基准电压VREF。

  3 新型CMOS基准电路设计

  图2为本文利用标准CMOS工艺设计的基准电路。该电路主要由启动电路、和式电流产生电路、有效负载电路构成。电路的基本原理是利用高性能和式电流源产生高电源抑制比的PTAT电流,再利用NMOS和PMOS管的两个阈值电压VTHN和VTHP具有相同方向,但不同数量的温度系数设计了一种基于不同VTH值的新型CMOS基准。

  3.1 和式电流源电路

  由图2可见,和式电流产生电路由自举式偏置电路(由MOS管M6~M9和电阻R2构成)产生偏置电流。设M9与M8的宽长比为K1,则有:

  但是由于体效应的存在,使得R2中的电流随电源电压VDD的变化有一定改变。所以文中引入和式电流产生电路。

  如图2可知,电阻R1中的电流值为:

  式中:K2为M5与M6的宽长比。

  由于MOS管的栅源电压VGS几乎不随电源电压的变化而变化,由式(6)、式(7)可知MOS管M4中的电流IM4的变化方向与R2中的电流IR2随电源电压的变化方向相反。

  由图2可知,取K3,K4分别为M10与M7,M11与M2的宽长比,M13与M12,M15与M14的宽长比为1,则MOS管ML1中的电流I为:

  合理选择式(8)中的K3,K4就能减小电源电压VDD对电流I的影响。

  由上面的分析和式电流源电路可以进一步减小电源电压对输出电流的影响。

  3.2 有效负载电路

  由图2可知,电流I流过MOS管M15,ML1时:

  由式(2)可知,载流子迁移率μ是温度的高阶函数,若近似认为μN,μP的温度变化量相等,可将K看作常数,可得:

  由式(3)和式(13)可知,取恰当的K值,即合理选择MOS管M15和ML1的宽长比,就可以使阈值电压VTHN和VTHP的温度系数相抵消,使VREF几乎不随环境温度的变化而变化。

  3.3 电路的优化

  在图2中MOS管M12,M13,M14,M15起电流镜像作用,可以将这4个管子省去,直接将负载管ML1接到M10和M11的漏极。这样将图2优化成图3就可以少4个MOS管,节省版图面积。

  4 仿真与分析

  通过上面的分析,初步确定该电路各器件尺寸,在0.6μm CMOS工艺下采用HSpice软件进行仿真可以得出,在3.3 V电源电压下对温度在-40~85℃范围内进行直流扫描,基准电压曲线如图4所示。在25℃下,对电源电压在2.6~5.5 V的范围内进行直流扫描,基准电压曲线如图5所示。据此计算出的基准电压电源电压调整率、温度系数见表1。

  与国际上已有的和CMOS兼容的电压基准电路的主要指标进行比较,结果如表2所示。可以看出,本文设计的CMOS基准的温度漂移率TFC远远小于国际上已有的和CMOS兼容的电压基准电路。

  5 结语

  本文所设计的基于CMOS工艺的基准电路结构较简单,既没有放大器,也没有BJT,适合于标准CMOS工艺生产。通过HSpice验证,其输出基准电压为1.22 V,在-40~85℃内温度系数仅为30 ppm/℃。当电源电压为2.6~5.5 V时,电源电压调整率为1.996 mV/V,且温度漂移率TFC远远小于国际上已有的和CMOS兼容的电压基准电路,比较适合于标准CMOS工艺。

关键字:温度系数  阈值电压  迁移率  电流源 编辑:探路者 引用地址:基于不同VTH值的新型CMOS电压基准

上一篇:如何优化PCB布局提高电源模块性能
下一篇:重新理解三极管的关键问题

推荐阅读最新更新时间:2023-10-18 15:35

有源元件温度系数对总误差的影响
  现在市面上可以看到很多0V~30V或60V可调直流输出范围的电源,但高于60V的电源则很少。本设计实例可提供这样一个解决方案。   现在有很多固定电压开关模式电源(SMPS),将几个这样的电源串联起来还可实现更高的固定电压。为了从SMPS或基于传统变压器的电源获得可调输出,需要用到线性调节器或开关模式降压转换器。对于降压转换器,可使用MOSFET或IGBT作为开关元件。   通常,高侧开关会使用自举IC或脉冲变压器。市场上很少有驱动MOSFET的光电耦合器。由于它们无法提供足够的电流来对栅极电容快速充电,这些光电耦合器主要用于驱动低频MOSFET开关,例如固态继电器。   这里尝试在开关稳压器中使用了光电耦合器(V
[电源管理]
有源元件<font color='red'>温度</font><font color='red'>系数</font>对总误差的影响
采用运放构成的可调电流源电路
采用运放构成的可调电流源电路
[电源管理]
采用运放构成的可调<font color='red'>电流源</font>电路
电流源设计小Tips(三):确认电流源电路图
对于工程师来说,电流源是个不可或缺的仪器,也有很多人想做一个合用的电流源,而应用开源套件,就只是用一整套的PCB,元件,程序等成套产品,参与者只需要将套件的东西焊接好,调试一下就可以了,这里面的技术含量能有多高,而我们能从中学到的技术又能有多少呢?本文只是从讲述原理出发,指导大家做个人人能掌控的电流源。本文主要就是设计到模拟部分的内容,而基本不涉及单片机,希望朋友能够从中学到点知识。上次讲到《 电流源设计小Tips(二):如何解决运放振荡问题 》,今天接下来看其它部分的学习。    思路大致如此:   1. 选用功率MOSFET的原因基于两点考虑。   首先功率MOSFET并非很慢,而稳恒源不要求很快。   其
[模拟电子]
<font color='red'>电流源</font>设计小Tips(三):确认<font color='red'>电流源</font>电路图
一款新型架构线性稳压器的崭新应用
  线性稳压器的用处很大,可以使用在很多场合。现在,我们以LT3080芯片为例来介绍线性稳压器的新应用。   LT3080摒弃了电压基准,并采用一个基准电流来设定输出。如图1所示,由单个电阻来设定稳压器中的一个电压跟随器的输出。输出电压可以调节到低至0V,或高至输入电源电压约1V范围之内。由于设定引脚与输出端上的电压相等,因此这些稳压器能够很容易地并联起来以共享电流(采用一小块电路板作为一个镇流电阻)。这使得热量能够在电路板上散播,从而免除了散热器。此外,输出晶体管的集电极是单独引出的,因而允许插入一个与集电极相串联的降压电阻。这将把IC稳压器产生的部分功耗移动至电路板上的一个电阻,从而进一步地增强散热效果,并免除了增设一
[电源管理]
一款新型架构线性稳压器的崭新应用
温度系数和电压可变的参考电压源电路图
温度系数和电压可变的参考电压源电路图
[模拟电子]
<font color='red'>温度</font><font color='red'>系数</font>和电压可变的参考电压源电路图
基于AT89C52的数控直流电流源设计方案
   本文设计的数控直流电流源能够很好地降低因元器件老化、温漂等原因造成的输出误差,输出电流在20—2000mA(可调)、输出电流可预置、输出电流信号可直接显示等功能。硬件电路采用单片机为控制核心,利用闭环控制原理,电路组成闭环负反馈进行稳流,最终实现精度高、稳定性好、输出范围宽的要求。   1 系统组成和原理   1.1 系统的组成   本电流源系统可分为稳压电源电路、单片机控制部分、A/D和D/A转换电路、恒流源电路、人机界面(包括键盘输入与LED显示)等几部分,其系统组成如图1所示。   1.2 系统的工作原理   系统原理如图1所示,系统通过稳压电源向恒流源提供24V电压,向单片机A
[单片机]
基于AT89C52的数控直流<font color='red'>电流源</font>设计方案
数控直流电流源的设计与实现
在电子设备中经常用到稳定性好、精度高、输出可预置的直流电流源。本文设计的数控直流电流源能够很好地降低因元器件老化、温漂等原因造成的输出误差,输出电流在20mA~2000mA可调,输出电流可预置、具有“+”、“-”步进调整、输出电流信号可直接显示和语音提示等功能。硬件电路采用凌阳单片机SPCE061A为控制核心,利用闭环控制原理,加上反馈电路,使整个电路构成一个闭环,在软件方面主要利用PID算法来实现对输出电流的精确控制。该系统可靠性高、体积小、操作简单方便、人机界面友好。    系统硬件实现方案   本设计采用单片机作为主要控制部件,通过键盘预置输出电流值并采用液晶模块实时显示。整个系统硬件部分由微控制器
[电源管理]
线性匹配独立电流源与传统白光LED驱动器解决方案之间的对比
   1 背景   早期的手机均具有较便宜的彩色发光二极管 (LED),用于键盘照明和黑白液晶显示(LCD) 背光照明。在世纪之交,LED 技术的进步实现了手机键盘的蓝白光 LED 照明。白光 LED (WLED) 只不过就是带有特殊涂层的蓝光 LED,从而产生白色光波长。由于 WLED 可以在 LCD 显示器上发射全色光谱,所以 WLED 现在为手机中主要的照明颜色。除了全色 LCD 背光照明以外,WLED 还可用于键盘、轨迹球及控制按钮照明、相机快闪和闪光灯。   第一代 WLED 需要更高的正向电压 ( 4.2V) 和电流 ( 20mA) 来实现手机应用所需的发光度或亮度。这些电压一般都高于电池电源,并且需要有驱
[电源管理]
线性匹配独立<font color='red'>电流源</font>与传统白光LED驱动器解决方案之间的对比
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved